This commit is contained in:
2021-07-01 20:26:24 -04:00
parent 8b02bf9a8c
commit f46d193826
16 changed files with 433 additions and 146 deletions

125
data.py
View File

@@ -1,27 +1,29 @@
# %%
import os
from unicodedata import category
import torch
from PIL import Image
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import sys
import json
import torch
from torchvision import transforms as T
import transforms as T
import os
import numpy as np
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if sys.platform == 'win32':
if sys.platform == "win32":
PATH_ROOT = r"D:\ishan\ml\inaturalist\\"
else:
raise NotImplementedError("Not defined for this platform")
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
trsf = []
trsf.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
trsf.append(T.RandomHorizontalFlip(0.5))
return T.Compose(trsf)
def create_map(list_in, from_key, to_key):
@@ -32,40 +34,45 @@ def create_map(list_in, from_key, to_key):
class iNaturalistDataset(torch.utils.data.Dataset):
def __init__(self, validation=False, train=False, transforms = None, species = None):
def __init__(self, validation=False, train=False, species=None):
self.validation = validation
self.train = train
if (self.train or self.validation) or (self.train and self.validation)
if (not self.train and not self.validation) or (self.train and self.validation):
raise Exception("Need to do either train or validation")
self.transforms = get_transform(self.train)
self.transform = get_transform(self.train)
if validation:
json_path = os.path.join(PATH_ROOT, "val_2017_bboxes","val_2017_bboxes.json")
json_path = os.path.join(
PATH_ROOT, "val_2017_bboxes", "val_2017_bboxes.json"
)
elif train:
json_path = os.path.join(
PATH_ROOT, "train_2017_bboxes","train_2017_bboxes.json"
PATH_ROOT, "train_2017_bboxes", "train_2017_bboxes.json"
)
with open(json_path, "r") as rj:
f = json.load(rj)
self.raw_data = f
categories = list()
image_info = dict()
orig_id_to_name = dict()
for category in f["categories"]:
do_add = False
orig_id_to_name[category["id"]] = category
if species is None:
do_add = True
if category['name'] in species:
print(category['name'])
elif category["name"] in species:
print(category["name"])
do_add = True
if do_add:
categories.append(category)
categories = sorted(categories, key=lambda k: k["name"])
for idx, cat in enumerate(categories):
cat["new_id"] = idx + 1
@@ -93,13 +100,13 @@ class iNaturalistDataset(torch.utils.data.Dataset):
for idx, (id, im_in) in enumerate(image_info.items()):
im_in["idx"] = idx
self.images = image_info
self.categories = categories
self.orig_id_to_name = orig_id_to_name
self.idx_to_id = [x for x in self.images]
self.num_classes = len(self.categories) + 1
self.num_samples = len(self.images)
def __len__(self):
return self.num_samples
@@ -109,18 +116,74 @@ class iNaturalistDataset(torch.utils.data.Dataset):
c_image = self.images[idd]
img_path = c_image["path"]
img = Image.open(img_path).convert("RGB")
annot = c_image["annotation"]
bbox = annot["bbox"]
boxes = bbox
target = dict()
target["boxes"] = torch.as_tensor([boxes])
target["labels"] = torch.as_tensor([annot["new_category_id"]], dtype=torch.int64)
target['image_id'] = torch.tensor([annot['image_id']])
target['area'] = torch.as_tensor([annot['area']])
target['iscrowd'] = torch.zeros((1,), dtype=torch.int64)
if self.transforms is not None:
img, target = self.transforms(img, target)
target["labels"] = torch.as_tensor(
[annot["new_category_id"]], dtype=torch.int64
)
target["image_id"] = torch.tensor([annot["image_id"]])
target["area"] = torch.as_tensor([annot["area"]])
target["iscrowd"] = torch.zeros((1,), dtype=torch.int64)
return img, target
if self.transform is not None:
img, target = self.transform(img, target)
return img, target
if False:
train_dataset = iNaturalistDataset(train=True)
loc_path = os.path.join(PATH_ROOT, "inat2017_locations", "train2017_locations.json")
with open(loc_path, "r") as lfile:
locs = json.load(lfile)
from bear_utils import get_distance_from_home
# %%
category_distances = dict()
inserts = 0
for loc in locs:
lat = loc["lat"]
lon = loc["lon"]
im_id = loc["id"]
if lat is None or lon is None:
continue
ff = get_distance_from_home(lat, lon)
if im_id in train_dataset.images:
inserts += 1
train_dataset.images[im_id]["distance"] = ff
category_id = train_dataset.images[im_id]["annotation"]["category_id"]
if category_id not in category_distances:
category_distances[category_id] = list()
category_distances[category_id].append(ff)
# %%
from EcoNameTranslator import to_common
for k, v in category_distances.items():
name = train_dataset.orig_id_to_name[k]
if np.average(np.asarray(v) < 250) > 0.1:
if name["supercategory"] == "Aves":
print(len(v), to_common([name["name"]]))
# %%
fc = sorted(
category_distances, key=lambda x: len(category_distances[x]), reverse=True
)
for x in fc:
cc = train_dataset.orig_id_to_name[x]
if cc["supercategory"] == "Aves":
ou = to_common([cc["name"]])
print(ou, len(category_distances[x]))
# %%