This commit is contained in:
2021-07-01 15:41:04 -04:00
parent 83195da92c
commit 8b02bf9a8c
8 changed files with 79 additions and 332 deletions

View File

@@ -0,0 +1,52 @@
# %%
from engine import train_one_epoch, evaluate
from model import Model
from data import iNaturalistDataset
import torch
import os
import time
if not os.path.exists('models/'):
os.mkdirs('models')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def run():
val_dataset = iNaturalistDataset(validation=True, transforms = get_transform(train=True))
train_dataset = iNaturalistDataset(train=True, transforms = get_transform(train=False))
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=8, shuffle=True, num_workers=1, collate_fn=utils.collate_fn
)
val_data_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=8, shuffle=True, num_workers=1, collate_fn=utils.collate_fn
)
num_classes = 5
model = Model(num_classes)
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=3,
gamma=0.1)
num_epochs = 10
for epoch in range(num_epochs):
print(epoch)
torch.save(model.state_dict(), 'model_weights_start_'+str(epoch)+ '.pth')
# train for one epoch, printing every 10 iterations
engine.train_one_epoch(model, optimizer, train_data_loader, device, epoch, print_freq=10)
torch.save(model.state_dict(), 'model_weights_post_train_'+str(epoch)+ '.pth')
# update the learning rate
lr_scheduler.step()
torch.save(model.state_dict(), 'model_weights_post_step_'+str(epoch)+ '.pth')
# evaluate on the test dataset
engine.evaluate(model, val_data_loader, device=device)
if __name__ == "__main__":
run()