This commit is contained in:
2021-07-01 15:22:44 -04:00
parent b0a8d52855
commit 83195da92c
30 changed files with 3253 additions and 283 deletions

98
data.py
View File

@@ -1,18 +1,19 @@
# %%
import os
import numpy as np
import torch
from PIL import Image
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from collections import defaultdict as ddict
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import json
import torch
from torchvision import datasets, transforms as T
import cv2
from torchvision import transforms as T
import numpy as np
import os
import sys
sys.path.append(r"K:\Designs\ML\inaturalist_models\data_aug")
sys.path.append(r"K:\Designs\ML\inaturalist_models\vision")
from references.detection import utils, engine
@@ -28,9 +29,6 @@ def get_transform(train):
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
IMAGE_MEAN = [0.485, 0.456, 0.406]
IMAGE_STD = [0.229, 0.224, 0.225]
PATH_ROOT = r"D:\ishan\ml\inaturalist\\"
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
@@ -43,12 +41,12 @@ def create_map(list_in, from_key, to_key):
class iNaturalistDataset(torch.utils.data.Dataset):
def __init__(self, validation=False, train=False):
def __init__(self, validation=False, train=False, transforms = None):
self.validation = validation
self.train = train
self.transforms = transforms
self.transforms = T.Compose([T.Resize(600, max_size=1024), T.ToTensor()])
if validation:
json_path = os.path.join(PATH_ROOT, r"val_2017_bboxes\val_2017_bboxes.json")
@@ -65,7 +63,7 @@ class iNaturalistDataset(torch.utils.data.Dataset):
for category in f["categories"]:
if category["supercategory"] == "Aves":
if category['name'] in ['Archilochus colubris','Icterus galbula']:
if category['name'] in ['Archilochus colubris']:#,'Icterus galbula']:
print(category['name'])
categories.append(category)
@@ -101,44 +99,35 @@ class iNaturalistDataset(torch.utils.data.Dataset):
self.idx_to_id = [x for x in self.images]
self.num_classes = len(self.categories) + 1
self.num_samples = len(self.images)
self.transforms = [
data_aug.RandomHorizontalFlip(0.5),
data_aug.Resize(600),
]
self.pre_transform = T.Compose([T.ToTensor()])#],T.Normalize(mean=[0.485, 0.456, 0.406],
#std=[0.229, 0.224, 0.225])])
def __len__(self):
return self.num_samples
def transform(self, img, bbox):
for x in self.transforms:
img, bbox = x(img, bbox)
img = self.pre_transform(img)
return img, bbox
def __getitem__(self, idx):
idd = self.idx_to_id[idx]
c_image = self.images[idd]
# print(c_image, idx, self.validation, self.train)
# breakpoint()
image = np.asarray(cv2.imread(c_image["path"])[:,:,::-1].copy(),dtype=np.float32)
img_path = c_image["path"]
img = Image.open(img_path).convert("RGB")
annot = c_image["annotation"]
bbox = annot["bbox"]
bbox.append(annot["new_category_id"])
bbox = np.asarray([bbox], dtype=np.float32)
image, bbox = self.transform(image.copy(), bbox.copy())
boxes = torch.as_tensor(bbox[:,:4], dtype=torch.float32)
boxes = bbox
target = dict()
target["boxes"] = boxes
target["boxes"] = torch.as_tensor([boxes])
target["labels"] = torch.as_tensor([annot["new_category_id"]], dtype=torch.int64)
target['image_id'] = torch.tensor([annot['image_id']])
target['area'] = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
target['area'] = torch.as_tensor([annot['area']])
target['iscrowd'] = torch.zeros((1,), dtype=torch.int64)
return image, target
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
# %%
# v = iNaturalistDataset(validation=True)
# v = iNaturalistDataset(validation= True)
# o = v[10]
@@ -149,24 +138,45 @@ class iNaturalistDataset(torch.utils.data.Dataset):
# plt.imshow(ox.permute([1,2,0]))
# plt.savefig('crap2.png')
def get_model(num_classes):
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
num_classes = 2 # 1 class (person) + background
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model
import transforms as T
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
from engine import train_one_epoch, evaluate
import utils
# %%
def run():
val_dataset = iNaturalistDataset(validation=True)
train_dataset = iNaturalistDataset(train=True)
val_dataset = iNaturalistDataset(validation=True, transforms = get_transform(train=True))
train_dataset = iNaturalistDataset(train=True, transforms = get_transform(train=False))
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=16, shuffle=True, num_workers=4, collate_fn=utils.collate_fn
train_dataset, batch_size=8, shuffle=True, num_workers=1, collate_fn=utils.collate_fn
)
val_data_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=16, shuffle=True, num_workers=4, collate_fn=utils.collate_fn
)
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(
pretrained=True, num_classes=train_dataset.num_classes, progress=True
val_dataset, batch_size=8, shuffle=True, num_workers=1, collate_fn=utils.collate_fn
)
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
num_classes = 2
model = get_model(num_classes)
model.to(device)
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,