initial
This commit is contained in:
239
transforms.py
Normal file
239
transforms.py
Normal file
@@ -0,0 +1,239 @@
|
||||
import torch
|
||||
import torchvision
|
||||
|
||||
from torch import nn, Tensor
|
||||
from torchvision.transforms import functional as F
|
||||
from torchvision.transforms import transforms as T
|
||||
from typing import List, Tuple, Dict, Optional
|
||||
|
||||
|
||||
def _flip_coco_person_keypoints(kps, width):
|
||||
flip_inds = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
flipped_data = kps[:, flip_inds]
|
||||
flipped_data[..., 0] = width - flipped_data[..., 0]
|
||||
# Maintain COCO convention that if visibility == 0, then x, y = 0
|
||||
inds = flipped_data[..., 2] == 0
|
||||
flipped_data[inds] = 0
|
||||
return flipped_data
|
||||
|
||||
|
||||
class Compose(object):
|
||||
def __init__(self, transforms):
|
||||
self.transforms = transforms
|
||||
|
||||
def __call__(self, image, target):
|
||||
for t in self.transforms:
|
||||
image, target = t(image, target)
|
||||
return image, target
|
||||
|
||||
|
||||
class RandomHorizontalFlip(T.RandomHorizontalFlip):
|
||||
def forward(self, image: Tensor,
|
||||
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
|
||||
if torch.rand(1) < self.p:
|
||||
image = F.hflip(image)
|
||||
if target is not None:
|
||||
width, _ = F._get_image_size(image)
|
||||
target["boxes"][:, [0, 2]] = width - target["boxes"][:, [2, 0]]
|
||||
if "masks" in target:
|
||||
target["masks"] = target["masks"].flip(-1)
|
||||
if "keypoints" in target:
|
||||
keypoints = target["keypoints"]
|
||||
keypoints = _flip_coco_person_keypoints(keypoints, width)
|
||||
target["keypoints"] = keypoints
|
||||
return image, target
|
||||
|
||||
|
||||
class ToTensor(nn.Module):
|
||||
def forward(self, image: Tensor,
|
||||
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
|
||||
image = F.to_tensor(image)
|
||||
return image, target
|
||||
|
||||
|
||||
class RandomIoUCrop(nn.Module):
|
||||
def __init__(self, min_scale: float = 0.3, max_scale: float = 1.0, min_aspect_ratio: float = 0.5,
|
||||
max_aspect_ratio: float = 2.0, sampler_options: Optional[List[float]] = None, trials: int = 40):
|
||||
super().__init__()
|
||||
# Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174
|
||||
self.min_scale = min_scale
|
||||
self.max_scale = max_scale
|
||||
self.min_aspect_ratio = min_aspect_ratio
|
||||
self.max_aspect_ratio = max_aspect_ratio
|
||||
if sampler_options is None:
|
||||
sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
|
||||
self.options = sampler_options
|
||||
self.trials = trials
|
||||
|
||||
def forward(self, image: Tensor,
|
||||
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
|
||||
if target is None:
|
||||
raise ValueError("The targets can't be None for this transform.")
|
||||
|
||||
if isinstance(image, torch.Tensor):
|
||||
if image.ndimension() not in {2, 3}:
|
||||
raise ValueError('image should be 2/3 dimensional. Got {} dimensions.'.format(image.ndimension()))
|
||||
elif image.ndimension() == 2:
|
||||
image = image.unsqueeze(0)
|
||||
|
||||
orig_w, orig_h = F._get_image_size(image)
|
||||
|
||||
while True:
|
||||
# sample an option
|
||||
idx = int(torch.randint(low=0, high=len(self.options), size=(1,)))
|
||||
min_jaccard_overlap = self.options[idx]
|
||||
if min_jaccard_overlap >= 1.0: # a value larger than 1 encodes the leave as-is option
|
||||
return image, target
|
||||
|
||||
for _ in range(self.trials):
|
||||
# check the aspect ratio limitations
|
||||
r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2)
|
||||
new_w = int(orig_w * r[0])
|
||||
new_h = int(orig_h * r[1])
|
||||
aspect_ratio = new_w / new_h
|
||||
if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio):
|
||||
continue
|
||||
|
||||
# check for 0 area crops
|
||||
r = torch.rand(2)
|
||||
left = int((orig_w - new_w) * r[0])
|
||||
top = int((orig_h - new_h) * r[1])
|
||||
right = left + new_w
|
||||
bottom = top + new_h
|
||||
if left == right or top == bottom:
|
||||
continue
|
||||
|
||||
# check for any valid boxes with centers within the crop area
|
||||
cx = 0.5 * (target["boxes"][:, 0] + target["boxes"][:, 2])
|
||||
cy = 0.5 * (target["boxes"][:, 1] + target["boxes"][:, 3])
|
||||
is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom)
|
||||
if not is_within_crop_area.any():
|
||||
continue
|
||||
|
||||
# check at least 1 box with jaccard limitations
|
||||
boxes = target["boxes"][is_within_crop_area]
|
||||
ious = torchvision.ops.boxes.box_iou(boxes, torch.tensor([[left, top, right, bottom]],
|
||||
dtype=boxes.dtype, device=boxes.device))
|
||||
if ious.max() < min_jaccard_overlap:
|
||||
continue
|
||||
|
||||
# keep only valid boxes and perform cropping
|
||||
target["boxes"] = boxes
|
||||
target["labels"] = target["labels"][is_within_crop_area]
|
||||
target["boxes"][:, 0::2] -= left
|
||||
target["boxes"][:, 1::2] -= top
|
||||
target["boxes"][:, 0::2].clamp_(min=0, max=new_w)
|
||||
target["boxes"][:, 1::2].clamp_(min=0, max=new_h)
|
||||
image = F.crop(image, top, left, new_h, new_w)
|
||||
|
||||
return image, target
|
||||
|
||||
|
||||
class RandomZoomOut(nn.Module):
|
||||
def __init__(self, fill: Optional[List[float]] = None, side_range: Tuple[float, float] = (1., 4.), p: float = 0.5):
|
||||
super().__init__()
|
||||
if fill is None:
|
||||
fill = [0., 0., 0.]
|
||||
self.fill = fill
|
||||
self.side_range = side_range
|
||||
if side_range[0] < 1. or side_range[0] > side_range[1]:
|
||||
raise ValueError("Invalid canvas side range provided {}.".format(side_range))
|
||||
self.p = p
|
||||
|
||||
@torch.jit.unused
|
||||
def _get_fill_value(self, is_pil):
|
||||
# type: (bool) -> int
|
||||
# We fake the type to make it work on JIT
|
||||
return tuple(int(x) for x in self.fill) if is_pil else 0
|
||||
|
||||
def forward(self, image: Tensor,
|
||||
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
|
||||
if isinstance(image, torch.Tensor):
|
||||
if image.ndimension() not in {2, 3}:
|
||||
raise ValueError('image should be 2/3 dimensional. Got {} dimensions.'.format(image.ndimension()))
|
||||
elif image.ndimension() == 2:
|
||||
image = image.unsqueeze(0)
|
||||
|
||||
if torch.rand(1) < self.p:
|
||||
return image, target
|
||||
|
||||
orig_w, orig_h = F._get_image_size(image)
|
||||
|
||||
r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0])
|
||||
canvas_width = int(orig_w * r)
|
||||
canvas_height = int(orig_h * r)
|
||||
|
||||
r = torch.rand(2)
|
||||
left = int((canvas_width - orig_w) * r[0])
|
||||
top = int((canvas_height - orig_h) * r[1])
|
||||
right = canvas_width - (left + orig_w)
|
||||
bottom = canvas_height - (top + orig_h)
|
||||
|
||||
if torch.jit.is_scripting():
|
||||
fill = 0
|
||||
else:
|
||||
fill = self._get_fill_value(F._is_pil_image(image))
|
||||
|
||||
image = F.pad(image, [left, top, right, bottom], fill=fill)
|
||||
if isinstance(image, torch.Tensor):
|
||||
v = torch.tensor(self.fill, device=image.device, dtype=image.dtype).view(-1, 1, 1)
|
||||
image[..., :top, :] = image[..., :, :left] = image[..., (top + orig_h):, :] = \
|
||||
image[..., :, (left + orig_w):] = v
|
||||
|
||||
if target is not None:
|
||||
target["boxes"][:, 0::2] += left
|
||||
target["boxes"][:, 1::2] += top
|
||||
|
||||
return image, target
|
||||
|
||||
|
||||
class RandomPhotometricDistort(nn.Module):
|
||||
def __init__(self, contrast: Tuple[float] = (0.5, 1.5), saturation: Tuple[float] = (0.5, 1.5),
|
||||
hue: Tuple[float] = (-0.05, 0.05), brightness: Tuple[float] = (0.875, 1.125), p: float = 0.5):
|
||||
super().__init__()
|
||||
self._brightness = T.ColorJitter(brightness=brightness)
|
||||
self._contrast = T.ColorJitter(contrast=contrast)
|
||||
self._hue = T.ColorJitter(hue=hue)
|
||||
self._saturation = T.ColorJitter(saturation=saturation)
|
||||
self.p = p
|
||||
|
||||
def forward(self, image: Tensor,
|
||||
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
|
||||
if isinstance(image, torch.Tensor):
|
||||
if image.ndimension() not in {2, 3}:
|
||||
raise ValueError('image should be 2/3 dimensional. Got {} dimensions.'.format(image.ndimension()))
|
||||
elif image.ndimension() == 2:
|
||||
image = image.unsqueeze(0)
|
||||
|
||||
r = torch.rand(7)
|
||||
|
||||
if r[0] < self.p:
|
||||
image = self._brightness(image)
|
||||
|
||||
contrast_before = r[1] < 0.5
|
||||
if contrast_before:
|
||||
if r[2] < self.p:
|
||||
image = self._contrast(image)
|
||||
|
||||
if r[3] < self.p:
|
||||
image = self._saturation(image)
|
||||
|
||||
if r[4] < self.p:
|
||||
image = self._hue(image)
|
||||
|
||||
if not contrast_before:
|
||||
if r[5] < self.p:
|
||||
image = self._contrast(image)
|
||||
|
||||
if r[6] < self.p:
|
||||
channels = F._get_image_num_channels(image)
|
||||
permutation = torch.randperm(channels)
|
||||
|
||||
is_pil = F._is_pil_image(image)
|
||||
if is_pil:
|
||||
image = F.to_tensor(image)
|
||||
image = image[..., permutation, :, :]
|
||||
if is_pil:
|
||||
image = F.to_pil_image(image)
|
||||
|
||||
return image, target
|
||||
Reference in New Issue
Block a user