This commit is contained in:
2021-07-01 12:41:54 -04:00
commit 7f8a3eb6b0
10 changed files with 1974 additions and 0 deletions

195
group_by_aspect_ratio.py Normal file
View File

@@ -0,0 +1,195 @@
import bisect
from collections import defaultdict
import copy
from itertools import repeat, chain
import math
import numpy as np
import torch
import torch.utils.data
from torch.utils.data.sampler import BatchSampler, Sampler
from torch.utils.model_zoo import tqdm
import torchvision
from PIL import Image
def _repeat_to_at_least(iterable, n):
repeat_times = math.ceil(n / len(iterable))
repeated = chain.from_iterable(repeat(iterable, repeat_times))
return list(repeated)
class GroupedBatchSampler(BatchSampler):
"""
Wraps another sampler to yield a mini-batch of indices.
It enforces that the batch only contain elements from the same group.
It also tries to provide mini-batches which follows an ordering which is
as close as possible to the ordering from the original sampler.
Args:
sampler (Sampler): Base sampler.
group_ids (list[int]): If the sampler produces indices in range [0, N),
`group_ids` must be a list of `N` ints which contains the group id of each sample.
The group ids must be a continuous set of integers starting from
0, i.e. they must be in the range [0, num_groups).
batch_size (int): Size of mini-batch.
"""
def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler):
raise ValueError(
"sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}".format(sampler)
)
self.sampler = sampler
self.group_ids = group_ids
self.batch_size = batch_size
def __iter__(self):
buffer_per_group = defaultdict(list)
samples_per_group = defaultdict(list)
num_batches = 0
for idx in self.sampler:
group_id = self.group_ids[idx]
buffer_per_group[group_id].append(idx)
samples_per_group[group_id].append(idx)
if len(buffer_per_group[group_id]) == self.batch_size:
yield buffer_per_group[group_id]
num_batches += 1
del buffer_per_group[group_id]
assert len(buffer_per_group[group_id]) < self.batch_size
# now we have run out of elements that satisfy
# the group criteria, let's return the remaining
# elements so that the size of the sampler is
# deterministic
expected_num_batches = len(self)
num_remaining = expected_num_batches - num_batches
if num_remaining > 0:
# for the remaining batches, take first the buffers with largest number
# of elements
for group_id, _ in sorted(buffer_per_group.items(),
key=lambda x: len(x[1]), reverse=True):
remaining = self.batch_size - len(buffer_per_group[group_id])
samples_from_group_id = _repeat_to_at_least(samples_per_group[group_id], remaining)
buffer_per_group[group_id].extend(samples_from_group_id[:remaining])
assert len(buffer_per_group[group_id]) == self.batch_size
yield buffer_per_group[group_id]
num_remaining -= 1
if num_remaining == 0:
break
assert num_remaining == 0
def __len__(self):
return len(self.sampler) // self.batch_size
def _compute_aspect_ratios_slow(dataset, indices=None):
print("Your dataset doesn't support the fast path for "
"computing the aspect ratios, so will iterate over "
"the full dataset and load every image instead. "
"This might take some time...")
if indices is None:
indices = range(len(dataset))
class SubsetSampler(Sampler):
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return iter(self.indices)
def __len__(self):
return len(self.indices)
sampler = SubsetSampler(indices)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, sampler=sampler,
num_workers=14, # you might want to increase it for faster processing
collate_fn=lambda x: x[0])
aspect_ratios = []
with tqdm(total=len(dataset)) as pbar:
for _i, (img, _) in enumerate(data_loader):
pbar.update(1)
height, width = img.shape[-2:]
aspect_ratio = float(width) / float(height)
aspect_ratios.append(aspect_ratio)
return aspect_ratios
def _compute_aspect_ratios_custom_dataset(dataset, indices=None):
if indices is None:
indices = range(len(dataset))
aspect_ratios = []
for i in indices:
height, width = dataset.get_height_and_width(i)
aspect_ratio = float(width) / float(height)
aspect_ratios.append(aspect_ratio)
return aspect_ratios
def _compute_aspect_ratios_coco_dataset(dataset, indices=None):
if indices is None:
indices = range(len(dataset))
aspect_ratios = []
for i in indices:
img_info = dataset.coco.imgs[dataset.ids[i]]
aspect_ratio = float(img_info["width"]) / float(img_info["height"])
aspect_ratios.append(aspect_ratio)
return aspect_ratios
def _compute_aspect_ratios_voc_dataset(dataset, indices=None):
if indices is None:
indices = range(len(dataset))
aspect_ratios = []
for i in indices:
# this doesn't load the data into memory, because PIL loads it lazily
width, height = Image.open(dataset.images[i]).size
aspect_ratio = float(width) / float(height)
aspect_ratios.append(aspect_ratio)
return aspect_ratios
def _compute_aspect_ratios_subset_dataset(dataset, indices=None):
if indices is None:
indices = range(len(dataset))
ds_indices = [dataset.indices[i] for i in indices]
return compute_aspect_ratios(dataset.dataset, ds_indices)
def compute_aspect_ratios(dataset, indices=None):
if hasattr(dataset, "get_height_and_width"):
return _compute_aspect_ratios_custom_dataset(dataset, indices)
if isinstance(dataset, torchvision.datasets.CocoDetection):
return _compute_aspect_ratios_coco_dataset(dataset, indices)
if isinstance(dataset, torchvision.datasets.VOCDetection):
return _compute_aspect_ratios_voc_dataset(dataset, indices)
if isinstance(dataset, torch.utils.data.Subset):
return _compute_aspect_ratios_subset_dataset(dataset, indices)
# slow path
return _compute_aspect_ratios_slow(dataset, indices)
def _quantize(x, bins):
bins = copy.deepcopy(bins)
bins = sorted(bins)
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
return quantized
def create_aspect_ratio_groups(dataset, k=0):
aspect_ratios = compute_aspect_ratios(dataset)
bins = (2 ** np.linspace(-1, 1, 2 * k + 1)).tolist() if k > 0 else [1.0]
groups = _quantize(aspect_ratios, bins)
# count number of elements per group
counts = np.unique(groups, return_counts=True)[1]
fbins = [0] + bins + [np.inf]
print("Using {} as bins for aspect ratio quantization".format(fbins))
print("Count of instances per bin: {}".format(counts))
return groups