Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yoloPlugins.cpp
2023-01-27 15:56:00 -03:00

312 lines
13 KiB
C++

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "yoloPlugins.h"
namespace {
template <typename T>
void write(char*& buffer, const T& val) {
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template <typename T>
void read(const char*& buffer, T& val) {
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
}
cudaError_t cudaYoloLayer_v8(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& numOutputClasses, cudaStream_t stream);
cudaError_t cudaYoloLayer_e(const void* cls, const void* reg, void* num_detections, void* detection_boxes,
void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& outputSize,
const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& numOutputClasses,
cudaStream_t stream);
cudaError_t cudaYoloLayer_r(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_nc(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* num_detections, void* detection_boxes,
void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize,
const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY,
const uint& numOutputClasses, const uint& numBBoxes, const void* anchors, cudaStream_t stream);
YoloLayer::YoloLayer(const void* data, size_t length) {
const char* d = static_cast<const char*>(data);
read(d, m_NetWidth);
read(d, m_NetHeight);
read(d, m_NumClasses);
read(d, m_NewCoords);
read(d, m_OutputSize);
read(d, m_Type);
read(d, m_ScoreThreshold);
if (m_Type != 3 && m_Type != 4) {
uint yoloTensorsSize;
read(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i) {
TensorInfo curYoloTensor;
read(d, curYoloTensor.gridSizeX);
read(d, curYoloTensor.gridSizeY);
read(d, curYoloTensor.numBBoxes);
read(d, curYoloTensor.scaleXY);
uint anchorsSize;
read(d, anchorsSize);
for (uint j = 0; j < anchorsSize; ++j) {
float result;
read(d, result);
curYoloTensor.anchors.push_back(result);
}
uint maskSize;
read(d, maskSize);
for (uint j = 0; j < maskSize; ++j) {
int result;
read(d, result);
curYoloTensor.mask.push_back(result);
}
m_YoloTensors.push_back(curYoloTensor);
}
}
};
YoloLayer::YoloLayer(const uint& netWidth, const uint& netHeight, const uint& numClasses, const uint& newCoords,
const std::vector<TensorInfo>& yoloTensors, const uint64_t& outputSize, const uint& modelType,
const float& scoreThreshold) : m_NetWidth(netWidth), m_NetHeight(netHeight), m_NumClasses(numClasses),
m_NewCoords(newCoords), m_YoloTensors(yoloTensors), m_OutputSize(outputSize), m_Type(modelType),
m_ScoreThreshold(scoreThreshold)
{
assert(m_NetWidth > 0);
assert(m_NetHeight > 0);
};
nvinfer1::Dims
YoloLayer::getOutputDimensions(int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
{
assert(index <= 4);
if (index == 0)
return nvinfer1::Dims{1, {1}};
else if (index == 1)
return nvinfer1::Dims{2, {static_cast<int>(m_OutputSize), 4}};
return nvinfer1::Dims{1, {static_cast<int>(m_OutputSize)}};
}
bool
YoloLayer::supportsFormat(nvinfer1::DataType type, nvinfer1::PluginFormat format) const noexcept {
return (type == nvinfer1::DataType::kFLOAT && format == nvinfer1::PluginFormat::kLINEAR);
}
void
YoloLayer::configureWithFormat(const nvinfer1::Dims* inputDims, int nbInputs, const nvinfer1::Dims* outputDims,
int nbOutputs, nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
{
assert(nbInputs > 0);
assert(format == nvinfer1::PluginFormat::kLINEAR);
assert(inputDims != nullptr);
}
int32_t
YoloLayer::enqueue(int batchSize, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
noexcept
{
void* num_detections = outputs[0];
void* detection_boxes = outputs[1];
void* detection_scores = outputs[2];
void* detection_classes = outputs[3];
CUDA_CHECK(cudaMemsetAsync((int*)num_detections, 0, sizeof(int) * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)detection_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)detection_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((int*)detection_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
if (m_Type == 4) {
CUDA_CHECK(cudaYoloLayer_v8(inputs[0], num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
}
else if (m_Type == 3) {
CUDA_CHECK(cudaYoloLayer_e(inputs[0], inputs[1], num_detections, detection_boxes, detection_scores, detection_classes,
batchSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
}
else {
uint yoloTensorsSize = m_YoloTensors.size();
for (uint i = 0; i < yoloTensorsSize; ++i) {
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
uint numBBoxes = curYoloTensor.numBBoxes;
float scaleXY = curYoloTensor.scaleXY;
uint gridSizeX = curYoloTensor.gridSizeX;
uint gridSizeY = curYoloTensor.gridSizeY;
std::vector<float> anchors = curYoloTensor.anchors;
std::vector<int> mask = curYoloTensor.mask;
void* v_anchors;
void* v_mask;
if (anchors.size() > 0) {
float* f_anchors = anchors.data();
CUDA_CHECK(cudaMalloc(&v_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMemcpyAsync(v_anchors, f_anchors, sizeof(float) * anchors.size(), cudaMemcpyHostToDevice, stream));
}
if (mask.size() > 0) {
int* f_mask = mask.data();
CUDA_CHECK(cudaMalloc(&v_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMemcpyAsync(v_mask, f_mask, sizeof(int) * mask.size(), cudaMemcpyHostToDevice, stream));
}
uint64_t inputSize = gridSizeX * gridSizeY * (numBBoxes * (4 + 1 + m_NumClasses));
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
CUDA_CHECK(cudaYoloLayer_r(inputs[i], num_detections, detection_boxes, detection_scores, detection_classes,
batchSize, inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
m_NumClasses, numBBoxes, 2.0, v_anchors, v_mask, stream));
}
else if (m_Type == 1) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc( inputs[i], num_detections, detection_boxes, detection_scores, detection_classes,
batchSize, inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
else {
CUDA_CHECK(cudaYoloLayer(inputs[i], num_detections, detection_boxes, detection_scores, detection_classes,
batchSize, inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
}
else {
void* softmax;
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize, stream));
CUDA_CHECK(cudaRegionLayer(inputs[i], softmax, num_detections, detection_boxes, detection_scores, detection_classes,
batchSize, inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
m_NumClasses, numBBoxes, v_anchors, stream));
CUDA_CHECK(cudaFree(softmax));
}
if (anchors.size() > 0) {
CUDA_CHECK(cudaFree(v_anchors));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaFree(v_mask));
}
}
}
return 0;
}
size_t
YoloLayer::getSerializationSize() const noexcept
{
size_t totalSize = 0;
totalSize += sizeof(m_NetWidth);
totalSize += sizeof(m_NetHeight);
totalSize += sizeof(m_NumClasses);
totalSize += sizeof(m_NewCoords);
totalSize += sizeof(m_OutputSize);
totalSize += sizeof(m_Type);
totalSize += sizeof(m_ScoreThreshold);
if (m_Type != 3 && m_Type != 4) {
uint yoloTensorsSize = m_YoloTensors.size();
totalSize += sizeof(yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i) {
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
totalSize += sizeof(curYoloTensor.gridSizeX);
totalSize += sizeof(curYoloTensor.gridSizeY);
totalSize += sizeof(curYoloTensor.numBBoxes);
totalSize += sizeof(curYoloTensor.scaleXY);
totalSize += sizeof(uint) + sizeof(curYoloTensor.anchors[0]) * curYoloTensor.anchors.size();
totalSize += sizeof(uint) + sizeof(curYoloTensor.mask[0]) * curYoloTensor.mask.size();
}
}
return totalSize;
}
void
YoloLayer::serialize(void* buffer) const noexcept
{
char* d = static_cast<char*>(buffer);
write(d, m_NetWidth);
write(d, m_NetHeight);
write(d, m_NumClasses);
write(d, m_NewCoords);
write(d, m_OutputSize);
write(d, m_Type);
write(d, m_ScoreThreshold);
if (m_Type != 3 && m_Type != 4) {
uint yoloTensorsSize = m_YoloTensors.size();
write(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i) {
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
write(d, curYoloTensor.gridSizeX);
write(d, curYoloTensor.gridSizeY);
write(d, curYoloTensor.numBBoxes);
write(d, curYoloTensor.scaleXY);
uint anchorsSize = curYoloTensor.anchors.size();
write(d, anchorsSize);
for (uint j = 0; j < anchorsSize; ++j)
write(d, curYoloTensor.anchors[j]);
uint maskSize = curYoloTensor.mask.size();
write(d, maskSize);
for (uint j = 0; j < maskSize; ++j)
write(d, curYoloTensor.mask[j]);
}
}
}
nvinfer1::IPluginV2*
YoloLayer::clone() const noexcept
{
return new YoloLayer(m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize, m_Type,
m_ScoreThreshold);
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);