Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yoloForward_v2.cu
2023-01-27 15:56:00 -03:00

107 lines
4.8 KiB
Plaintext

/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include <stdint.h>
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
__device__ void softmaxGPU(const float* input, const int bbindex, const int numGridCells, uint z_id,
const uint numOutputClasses, float temp, float* output)
{
int i;
float sum = 0;
float largest = -INFINITY;
for (i = 0; i < numOutputClasses; ++i) {
int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
largest = (val>largest) ? val : largest;
}
for (i = 0; i < numOutputClasses; ++i) {
float e = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp);
sum += e;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e;
}
for (i = 0; i < numOutputClasses; ++i) {
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum;
}
}
__global__ void gpuRegionLayer(const float* input, float* softmax, int* num_detections, float* detection_boxes,
float* detection_scores, int* detection_classes, const float scoreThreshold, const uint netWidth, const uint netHeight,
const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float* anchors)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
const float objectness = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(num_detections, 1);
float x = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) + x_id) * netWidth / gridSizeX;
float y = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) + y_id) * netHeight / gridSizeY;
float w = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]) * anchors[z_id * 2] * netWidth /
gridSizeX;
float h = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]) * anchors[z_id * 2 + 1] * netHeight /
gridSizeY;
softmaxGPU(input, bbindex, numGridCells, z_id, numOutputClasses, 1.0, softmax);
float maxProb = 0.0f;
int maxIndex = -1;
for (uint i = 0; i < numOutputClasses; ++i) {
float prob = softmax[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
if (prob > maxProb) {
maxProb = prob;
maxIndex = i;
}
}
detection_boxes[count * 4 + 0] = x - 0.5 * w;
detection_boxes[count * 4 + 1] = y - 0.5 * h;
detection_boxes[count * 4 + 2] = x + 0.5 * w;
detection_boxes[count * 4 + 3] = y + 0.5 * h;
detection_scores[count] = objectness * maxProb;
detection_classes[count] = maxIndex;
}
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* num_detections, void* detection_boxes,
void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize,
const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY,
const uint& numOutputClasses, const uint& numBBoxes, const void* anchors, cudaStream_t stream);
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* num_detections, void* detection_boxes,
void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize,
const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY,
const uint& numOutputClasses, const uint& numBBoxes, const void* anchors, cudaStream_t stream)
{
dim3 threads_per_block(16, 16, 4);
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1,
(numBBoxes / threads_per_block.z) + 1);
for (unsigned int batch = 0; batch < batchSize; ++batch) {
gpuRegionLayer<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*>(input) + (batch * inputSize), reinterpret_cast<float*>(softmax) + (batch * inputSize),
reinterpret_cast<int*>(num_detections) + (batch),
reinterpret_cast<float*>(detection_boxes) + (batch * 4 * outputSize),
reinterpret_cast<float*>(detection_scores) + (batch * outputSize),
reinterpret_cast<int*>(detection_classes) + (batch * outputSize), scoreThreshold, netWidth, netHeight, gridSizeX,
gridSizeY, numOutputClasses, numBBoxes, reinterpret_cast<const float*>(anchors));
}
return cudaGetLastError();
}