Files
deepstream_yolo/utils/export_goldyolo.py
2024-11-07 11:25:17 -03:00

122 lines
3.9 KiB
Python

import os
import onnx
import torch
import torch.nn as nn
import yolov6.utils.general as _m
from yolov6.layers.common import SiLU
from gold_yolo.switch_tool import switch_to_deploy
from yolov6.utils.checkpoint import load_checkpoint
def _dist2bbox(distance, anchor_points, box_format='xyxy'):
lt, rb = torch.split(distance, 2, -1)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
bbox = torch.cat([x1y1, x2y2], -1)
return bbox
_m.dist2bbox.__code__ = _dist2bbox.__code__
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True)
scores *= objectness
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def gold_yolo_export(weights, device, inplace=True, fuse=True):
model = load_checkpoint(weights, map_location=device, inplace=inplace, fuse=fuse)
model = switch_to_deploy(model)
for layer in model.modules():
t = type(layer)
if t.__name__ == 'RepVGGBlock':
layer.switch_to_deploy()
model.eval()
for k, m in model.named_modules():
if m.__class__.__name__ == 'Conv':
if isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif m.__class__.__name__ == 'Detect':
m.inplace = False
return model
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print(f'\nStarting: {args.weights}')
print('Opening Gold-YOLO model')
device = torch.device('cpu')
model = gold_yolo_export(args.weights, device)
model = nn.Sequential(model, DeepStreamOutput())
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying the ONNX model')
import onnxslim
model_onnx = onnx.load(onnx_output_file)
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream Gold-YOLO conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=13, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
main(args)