151 lines
5.4 KiB
Python
151 lines
5.4 KiB
Python
import os
|
|
import types
|
|
import onnx
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from mmdet.apis import init_detector
|
|
from projects.easydeploy.model import DeployModel, MMYOLOBackend
|
|
from projects.easydeploy.bbox_code import rtmdet_bbox_decoder as bbox_decoder
|
|
|
|
|
|
class DeepStreamOutput(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
boxes = x[0]
|
|
scores, labels = torch.max(x[1], dim=-1, keepdim=True)
|
|
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
|
|
|
|
|
def pred_by_feat_deepstream(self, cls_scores, bbox_preds, objectnesses=None, **kwargs):
|
|
assert len(cls_scores) == len(bbox_preds)
|
|
dtype = cls_scores[0].dtype
|
|
device = cls_scores[0].device
|
|
|
|
num_imgs = cls_scores[0].shape[0]
|
|
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
|
|
|
|
mlvl_priors = self.prior_generate(featmap_sizes, dtype=dtype, device=device)
|
|
|
|
flatten_priors = torch.cat(mlvl_priors)
|
|
|
|
mlvl_strides = [
|
|
flatten_priors.new_full(
|
|
(featmap_size[0] * featmap_size[1] * self.num_base_priors,), stride
|
|
) for featmap_size, stride in zip(
|
|
featmap_sizes, self.featmap_strides
|
|
)
|
|
]
|
|
flatten_stride = torch.cat(mlvl_strides)
|
|
|
|
flatten_cls_scores = [
|
|
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.num_classes) for cls_score in cls_scores
|
|
]
|
|
cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
|
|
|
|
flatten_bbox_preds = [bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) for bbox_pred in bbox_preds]
|
|
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
|
|
|
|
if objectnesses is not None:
|
|
flatten_objectness = [objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) for objectness in objectnesses]
|
|
flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
|
|
cls_scores = cls_scores * (flatten_objectness.unsqueeze(-1))
|
|
|
|
scores = cls_scores
|
|
|
|
bboxes = bbox_decoder(flatten_priors[None], flatten_bbox_preds, flatten_stride)
|
|
|
|
return bboxes, scores
|
|
|
|
|
|
def rtmdet_export(weights, config, device):
|
|
model = init_detector(config, weights, device=device)
|
|
model.eval()
|
|
deploy_model = DeployModel(baseModel=model, backend=MMYOLOBackend.ONNXRUNTIME, postprocess_cfg=None)
|
|
deploy_model.eval()
|
|
deploy_model.with_postprocess = True
|
|
deploy_model.prior_generate = model.bbox_head.prior_generator.grid_priors
|
|
deploy_model.num_base_priors = model.bbox_head.num_base_priors
|
|
deploy_model.featmap_strides = model.bbox_head.featmap_strides
|
|
deploy_model.num_classes = model.bbox_head.num_classes
|
|
deploy_model.pred_by_feat = types.MethodType(pred_by_feat_deepstream, deploy_model)
|
|
return deploy_model
|
|
|
|
|
|
def suppress_warnings():
|
|
import warnings
|
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
|
warnings.filterwarnings('ignore', category=UserWarning)
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
|
warnings.filterwarnings('ignore', category=ResourceWarning)
|
|
|
|
|
|
def main(args):
|
|
suppress_warnings()
|
|
|
|
print(f'\nStarting: {args.weights}')
|
|
|
|
print('Opening RTMDet model')
|
|
|
|
device = torch.device('cpu')
|
|
model = rtmdet_export(args.weights, args.config, device)
|
|
|
|
model = nn.Sequential(model, DeepStreamOutput())
|
|
|
|
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
|
|
|
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
|
onnx_output_file = f'{args.weights}.onnx'
|
|
|
|
dynamic_axes = {
|
|
'input': {
|
|
0: 'batch'
|
|
},
|
|
'output': {
|
|
0: 'batch'
|
|
}
|
|
}
|
|
|
|
print('Exporting the model to ONNX')
|
|
torch.onnx.export(
|
|
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
|
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
|
)
|
|
|
|
if args.simplify:
|
|
print('Simplifying the ONNX model')
|
|
import onnxslim
|
|
model_onnx = onnx.load(onnx_output_file)
|
|
model_onnx = onnxslim.slim(model_onnx)
|
|
onnx.save(model_onnx, onnx_output_file)
|
|
|
|
print(f'Done: {onnx_output_file}\n')
|
|
|
|
|
|
def parse_args():
|
|
import argparse
|
|
parser = argparse.ArgumentParser(description='DeepStream RTMDet conversion')
|
|
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pt) file path (required)')
|
|
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
|
|
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
|
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
|
|
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
|
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
|
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
|
args = parser.parse_args()
|
|
if not os.path.isfile(args.weights):
|
|
raise SystemExit('Invalid weights file')
|
|
if not os.path.isfile(args.config):
|
|
raise SystemExit('Invalid config file')
|
|
if args.dynamic and args.batch > 1:
|
|
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
main(args)
|