150 lines
5.2 KiB
C++
150 lines
5.2 KiB
C++
/*
|
|
* Copyright (c) 2018-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Edited by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include "nvdsinfer_custom_impl.h"
|
|
#include "nvdsinfer_context.h"
|
|
|
|
#include "yolo.h"
|
|
|
|
#define USE_CUDA_ENGINE_GET_API 1
|
|
|
|
static bool
|
|
getYoloNetworkInfo(NetworkInfo& networkInfo, const NvDsInferContextInitParams* initParams)
|
|
{
|
|
std::string onnxFilePath = initParams->onnxFilePath;
|
|
std::string wtsFilePath = initParams->modelFilePath;
|
|
std::string cfgFilePath = initParams->customNetworkConfigFilePath;
|
|
|
|
std::string yoloType = onnxFilePath != "" ? "onnx" : "darknet";
|
|
std::string modelName = yoloType == "onnx" ?
|
|
onnxFilePath.substr(0, onnxFilePath.find(".onnx")).substr(onnxFilePath.rfind("/") + 1) :
|
|
cfgFilePath.substr(0, cfgFilePath.find(".cfg")).substr(cfgFilePath.rfind("/") + 1);
|
|
|
|
std::transform(modelName.begin(), modelName.end(), modelName.begin(), [] (uint8_t c) {
|
|
return std::tolower(c);
|
|
});
|
|
|
|
networkInfo.inputBlobName = "input";
|
|
networkInfo.networkType = yoloType;
|
|
networkInfo.modelName = modelName;
|
|
networkInfo.onnxFilePath = onnxFilePath;
|
|
networkInfo.wtsFilePath = wtsFilePath;
|
|
networkInfo.cfgFilePath = cfgFilePath;
|
|
networkInfo.batchSize = initParams->maxBatchSize;
|
|
networkInfo.implicitBatch = initParams->forceImplicitBatchDimension;
|
|
networkInfo.int8CalibPath = initParams->int8CalibrationFilePath;
|
|
networkInfo.deviceType = initParams->useDLA ? "kDLA" : "kGPU";
|
|
networkInfo.numDetectedClasses = initParams->numDetectedClasses;
|
|
networkInfo.clusterMode = initParams->clusterMode;
|
|
networkInfo.scaleFactor = initParams->networkScaleFactor;
|
|
networkInfo.offsets = initParams->offsets;
|
|
networkInfo.workspaceSize = initParams->workspaceSize;
|
|
networkInfo.inputFormat = initParams->networkInputFormat;
|
|
|
|
if (initParams->networkMode == NvDsInferNetworkMode_FP32) {
|
|
networkInfo.networkMode = "FP32";
|
|
}
|
|
else if (initParams->networkMode == NvDsInferNetworkMode_INT8) {
|
|
networkInfo.networkMode = "INT8";
|
|
}
|
|
else if (initParams->networkMode == NvDsInferNetworkMode_FP16) {
|
|
networkInfo.networkMode = "FP16";
|
|
}
|
|
|
|
if (yoloType == "onnx") {
|
|
if (!fileExists(networkInfo.onnxFilePath)) {
|
|
std::cerr << "ONNX file does not exist\n" << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
if (!fileExists(networkInfo.wtsFilePath)) {
|
|
std::cerr << "Darknet weights file does not exist\n" << std::endl;
|
|
return false;
|
|
}
|
|
else if (!fileExists(networkInfo.cfgFilePath)) {
|
|
std::cerr << "Darknet cfg file does not exist\n" << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#if !USE_CUDA_ENGINE_GET_API
|
|
IModelParser*
|
|
NvDsInferCreateModelParser(const NvDsInferContextInitParams* initParams)
|
|
{
|
|
NetworkInfo networkInfo;
|
|
if (!getYoloNetworkInfo(networkInfo, initParams))
|
|
return nullptr;
|
|
|
|
return new Yolo(networkInfo);
|
|
}
|
|
#else
|
|
|
|
#if NV_TENSORRT_MAJOR >= 8
|
|
extern "C" bool
|
|
NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, nvinfer1::IBuilderConfig* const builderConfig,
|
|
const NvDsInferContextInitParams* const initParams, nvinfer1::DataType dataType,
|
|
nvinfer1::ICudaEngine*& cudaEngine);
|
|
|
|
extern "C" bool
|
|
NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, nvinfer1::IBuilderConfig* const builderConfig,
|
|
const NvDsInferContextInitParams* const initParams, nvinfer1::DataType dataType, nvinfer1::ICudaEngine*& cudaEngine)
|
|
#else
|
|
extern "C" bool
|
|
NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, const NvDsInferContextInitParams* const initParams,
|
|
nvinfer1::DataType dataType, nvinfer1::ICudaEngine*& cudaEngine);
|
|
|
|
extern "C" bool
|
|
NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, const NvDsInferContextInitParams* const initParams,
|
|
nvinfer1::DataType dataType, nvinfer1::ICudaEngine*& cudaEngine)
|
|
#endif
|
|
|
|
{
|
|
NetworkInfo networkInfo;
|
|
if (!getYoloNetworkInfo(networkInfo, initParams))
|
|
return false;
|
|
|
|
Yolo yolo(networkInfo);
|
|
|
|
#if NV_TENSORRT_MAJOR >= 8
|
|
cudaEngine = yolo.createEngine(builder, builderConfig);
|
|
#else
|
|
cudaEngine = yolo.createEngine(builder);
|
|
#endif
|
|
|
|
if (cudaEngine == nullptr) {
|
|
std::cerr << "Failed to build CUDA engine" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|