- Added support for INT8 calibration - Added support for non square models - Updated mAP comparison between models
378 lines
14 KiB
C++
378 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
* Edited by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
#include "nvdsinfer_custom_impl.h"
|
|
#include "utils.h"
|
|
|
|
#include "yoloPlugins.h"
|
|
|
|
extern "C" bool NvDsInferParseYolo(
|
|
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList);
|
|
|
|
static std::vector<NvDsInferParseObjectInfo>
|
|
nonMaximumSuppression(const float nmsThresh, std::vector<NvDsInferParseObjectInfo> binfo)
|
|
{
|
|
auto overlap1D = [](float x1min, float x1max, float x2min, float x2max) -> float {
|
|
if (x1min > x2min)
|
|
{
|
|
std::swap(x1min, x2min);
|
|
std::swap(x1max, x2max);
|
|
}
|
|
return x1max < x2min ? 0 : std::min(x1max, x2max) - x2min;
|
|
};
|
|
auto computeIoU
|
|
= [&overlap1D](NvDsInferParseObjectInfo& bbox1, NvDsInferParseObjectInfo& bbox2) -> float {
|
|
float overlapX
|
|
= overlap1D(bbox1.left, bbox1.left + bbox1.width, bbox2.left, bbox2.left + bbox2.width);
|
|
float overlapY
|
|
= overlap1D(bbox1.top, bbox1.top + bbox1.height, bbox2.top, bbox2.top + bbox2.height);
|
|
float area1 = (bbox1.width) * (bbox1.height);
|
|
float area2 = (bbox2.width) * (bbox2.height);
|
|
float overlap2D = overlapX * overlapY;
|
|
float u = area1 + area2 - overlap2D;
|
|
return u == 0 ? 0 : overlap2D / u;
|
|
};
|
|
|
|
std::stable_sort(binfo.begin(), binfo.end(),
|
|
[](const NvDsInferParseObjectInfo& b1, const NvDsInferParseObjectInfo& b2) {
|
|
return b1.detectionConfidence > b2.detectionConfidence;
|
|
});
|
|
std::vector<NvDsInferParseObjectInfo> out;
|
|
for (auto i : binfo)
|
|
{
|
|
bool keep = true;
|
|
for (auto j : out)
|
|
{
|
|
if (keep)
|
|
{
|
|
float overlap = computeIoU(i, j);
|
|
keep = overlap <= nmsThresh;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
if (keep) out.push_back(i);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static std::vector<NvDsInferParseObjectInfo>
|
|
nmsAllClasses(const float nmsThresh,
|
|
std::vector<NvDsInferParseObjectInfo>& binfo,
|
|
const uint numClasses)
|
|
{
|
|
std::vector<NvDsInferParseObjectInfo> result;
|
|
std::vector<std::vector<NvDsInferParseObjectInfo>> splitBoxes(numClasses);
|
|
for (auto& box : binfo)
|
|
{
|
|
splitBoxes.at(box.classId).push_back(box);
|
|
}
|
|
|
|
for (auto& boxes : splitBoxes)
|
|
{
|
|
boxes = nonMaximumSuppression(nmsThresh, boxes);
|
|
result.insert(result.end(), boxes.begin(), boxes.end());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static NvDsInferParseObjectInfo convertBBox(const float& bx, const float& by, const float& bw,
|
|
const float& bh, const int& stride, const uint& netW,
|
|
const uint& netH)
|
|
{
|
|
NvDsInferParseObjectInfo b;
|
|
float xCenter = bx * stride;
|
|
float yCenter = by * stride;
|
|
float x0 = xCenter - bw / 2;
|
|
float y0 = yCenter - bh / 2;
|
|
float x1 = x0 + bw;
|
|
float y1 = y0 + bh;
|
|
|
|
x0 = clamp(x0, 0, netW);
|
|
y0 = clamp(y0, 0, netH);
|
|
x1 = clamp(x1, 0, netW);
|
|
y1 = clamp(y1, 0, netH);
|
|
|
|
b.left = x0;
|
|
b.width = clamp(x1 - x0, 0, netW);
|
|
b.top = y0;
|
|
b.height = clamp(y1 - y0, 0, netH);
|
|
|
|
return b;
|
|
}
|
|
|
|
static void addBBoxProposal(const float bx, const float by, const float bw, const float bh,
|
|
const uint stride, const uint& netW, const uint& netH, const int maxIndex,
|
|
const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
|
|
{
|
|
NvDsInferParseObjectInfo bbi = convertBBox(bx, by, bw, bh, stride, netW, netH);
|
|
if (bbi.width < 1 || bbi.height < 1) return;
|
|
|
|
bbi.detectionConfidence = maxProb;
|
|
bbi.classId = maxIndex;
|
|
binfo.push_back(bbi);
|
|
}
|
|
|
|
static std::vector<NvDsInferParseObjectInfo>
|
|
decodeYoloTensor(
|
|
const float* detections, const std::vector<int> &mask, const std::vector<float> &anchors,
|
|
const uint gridSizeW, const uint gridSizeH, const uint stride, const uint numBBoxes,
|
|
const uint numOutputClasses, const uint& netW,
|
|
const uint& netH,
|
|
const float confThresh)
|
|
{
|
|
std::vector<NvDsInferParseObjectInfo> binfo;
|
|
for (uint y = 0; y < gridSizeH; ++y) {
|
|
for (uint x = 0; x < gridSizeW; ++x) {
|
|
for (uint b = 0; b < numBBoxes; ++b)
|
|
{
|
|
const float pw = anchors[mask[b] * 2];
|
|
const float ph = anchors[mask[b] * 2 + 1];
|
|
|
|
const int numGridCells = gridSizeH * gridSizeW;
|
|
const int bbindex = y * gridSizeW + x;
|
|
const float bx
|
|
= x + detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 0)];
|
|
const float by
|
|
= y + detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 1)];
|
|
const float bw
|
|
= pw * detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 2)];
|
|
const float bh
|
|
= ph * detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 3)];
|
|
|
|
const float objectness
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 4)];
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numOutputClasses; ++i)
|
|
{
|
|
float prob
|
|
= (detections[bbindex
|
|
+ numGridCells * (b * (5 + numOutputClasses) + (5 + i))]);
|
|
|
|
if (prob > maxProb)
|
|
{
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
maxProb = objectness * maxProb;
|
|
|
|
if (maxProb > confThresh)
|
|
{
|
|
addBBoxProposal(bx, by, bw, bh, stride, netW, netH, maxIndex, maxProb, binfo);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return binfo;
|
|
}
|
|
|
|
static std::vector<NvDsInferParseObjectInfo>
|
|
decodeYoloV2Tensor(
|
|
const float* detections, const std::vector<float> &anchors,
|
|
const uint gridSizeW, const uint gridSizeH, const uint stride, const uint numBBoxes,
|
|
const uint numOutputClasses, const uint& netW,
|
|
const uint& netH)
|
|
{
|
|
std::vector<NvDsInferParseObjectInfo> binfo;
|
|
for (uint y = 0; y < gridSizeH; ++y) {
|
|
for (uint x = 0; x < gridSizeW; ++x) {
|
|
for (uint b = 0; b < numBBoxes; ++b)
|
|
{
|
|
const float pw = anchors[b * 2];
|
|
const float ph = anchors[b * 2 + 1];
|
|
|
|
const int numGridCells = gridSizeH * gridSizeW;
|
|
const int bbindex = y * gridSizeW + x;
|
|
const float bx
|
|
= x + detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 0)];
|
|
const float by
|
|
= y + detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 1)];
|
|
const float bw
|
|
= pw * detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 2)];
|
|
const float bh
|
|
= ph * detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 3)];
|
|
|
|
const float objectness
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 4)];
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numOutputClasses; ++i)
|
|
{
|
|
float prob
|
|
= (detections[bbindex
|
|
+ numGridCells * (b * (5 + numOutputClasses) + (5 + i))]);
|
|
|
|
if (prob > maxProb)
|
|
{
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
maxProb = objectness * maxProb;
|
|
|
|
addBBoxProposal(bx, by, bw, bh, stride, netW, netH, maxIndex, maxProb, binfo);
|
|
}
|
|
}
|
|
}
|
|
return binfo;
|
|
}
|
|
|
|
static inline std::vector<const NvDsInferLayerInfo*>
|
|
SortLayers(const std::vector<NvDsInferLayerInfo> & outputLayersInfo)
|
|
{
|
|
std::vector<const NvDsInferLayerInfo*> outLayers;
|
|
for (auto const &layer : outputLayersInfo) {
|
|
outLayers.push_back (&layer);
|
|
}
|
|
std::sort(outLayers.begin(), outLayers.end(),
|
|
[](const NvDsInferLayerInfo* a, const NvDsInferLayerInfo* b) {
|
|
return a->inferDims.d[1] < b->inferDims.d[1];
|
|
});
|
|
return outLayers;
|
|
}
|
|
|
|
static bool NvDsInferParseYolo(
|
|
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList,
|
|
const std::vector<float> &anchors,
|
|
const std::vector<std::vector<int>> &masks,
|
|
const uint &num_classes,
|
|
const float &beta_nms)
|
|
{
|
|
const float kCONF_THRESH = detectionParams.perClassThreshold[0];
|
|
|
|
const std::vector<const NvDsInferLayerInfo*> sortedLayers =
|
|
SortLayers (outputLayersInfo);
|
|
|
|
if (sortedLayers.size() != masks.size()) {
|
|
std::cerr << "ERROR: YOLO output layer.size: " << sortedLayers.size()
|
|
<< " does not match mask.size: " << masks.size() << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (num_classes != detectionParams.numClassesConfigured)
|
|
{
|
|
std::cerr << "WARNING: Num classes mismatch. Configured: "
|
|
<< detectionParams.numClassesConfigured
|
|
<< ", detected by network: " << num_classes << std::endl;
|
|
}
|
|
|
|
std::vector<NvDsInferParseObjectInfo> objects;
|
|
|
|
for (uint idx = 0; idx < masks.size(); ++idx) {
|
|
const NvDsInferLayerInfo &layer = *sortedLayers[idx]; // 255 x Grid x Grid
|
|
|
|
assert(layer.inferDims.numDims == 3);
|
|
const uint gridSizeH = layer.inferDims.d[1];
|
|
const uint gridSizeW = layer.inferDims.d[2];
|
|
const uint stride = DIVUP(networkInfo.width, gridSizeW);
|
|
|
|
std::vector<NvDsInferParseObjectInfo> outObjs =
|
|
decodeYoloTensor((const float*)(layer.buffer), masks[idx], anchors, gridSizeW, gridSizeH, stride, masks[idx].size(),
|
|
num_classes, networkInfo.width, networkInfo.height, kCONF_THRESH);
|
|
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
|
|
}
|
|
|
|
|
|
objectList.clear();
|
|
objectList = nmsAllClasses(beta_nms, objects, num_classes);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool NvDsInferParseYoloV2(
|
|
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList,
|
|
std::vector<float> &anchors,
|
|
const uint &num_classes)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "Could not find output layer in bbox parsing" << std::endl;;
|
|
return false;
|
|
}
|
|
const uint kNUM_BBOXES = anchors.size() / 2;
|
|
|
|
const NvDsInferLayerInfo &layer = outputLayersInfo[0];
|
|
|
|
if (num_classes != detectionParams.numClassesConfigured)
|
|
{
|
|
std::cerr << "WARNING: Num classes mismatch. Configured: "
|
|
<< detectionParams.numClassesConfigured
|
|
<< ", detected by network: " << num_classes << std::endl;
|
|
}
|
|
|
|
assert(layer.inferDims.numDims == 3);
|
|
const uint gridSizeH = layer.inferDims.d[1];
|
|
const uint gridSizeW = layer.inferDims.d[2];
|
|
const uint stride = DIVUP(networkInfo.width, gridSizeW);
|
|
for (auto& anchor : anchors) {
|
|
anchor *= stride;
|
|
}
|
|
std::vector<NvDsInferParseObjectInfo> objects =
|
|
decodeYoloV2Tensor((const float*)(layer.buffer), anchors, gridSizeW, gridSizeH, stride, kNUM_BBOXES,
|
|
num_classes, networkInfo.width, networkInfo.height);
|
|
|
|
objectList = objects;
|
|
|
|
return true;
|
|
}
|
|
|
|
extern "C" bool NvDsInferParseYolo(
|
|
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
|
|
int num_classes = kNUM_CLASSES;
|
|
float beta_nms = kBETA_NMS;
|
|
std::vector<float> anchors = kANCHORS;
|
|
std::vector<std::vector<int>> mask = kMASK;
|
|
|
|
if (mask.size() > 0) {
|
|
return NvDsInferParseYolo (outputLayersInfo, networkInfo, detectionParams, objectList, anchors, mask, num_classes, beta_nms);
|
|
}
|
|
else {
|
|
return NvDsInferParseYoloV2 (outputLayersInfo, networkInfo, detectionParams, objectList, anchors, num_classes);
|
|
}
|
|
}
|
|
|
|
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo); |