126 lines
5.1 KiB
Plaintext
126 lines
5.1 KiB
Plaintext
/*
|
|
* Created by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
|
|
|
|
__device__ void softmaxGPU(
|
|
const float* input, const int bbindex, const int numGridCells, uint z_id, const uint numOutputClasses, float temp,
|
|
float* output)
|
|
{
|
|
int i;
|
|
float sum = 0;
|
|
float largest = -INFINITY;
|
|
for (i = 0; i < numOutputClasses; ++i) {
|
|
int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
|
largest = (val>largest) ? val : largest;
|
|
}
|
|
for (i = 0; i < numOutputClasses; ++i) {
|
|
float e = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp);
|
|
sum += e;
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e;
|
|
}
|
|
for (i = 0; i < numOutputClasses; ++i) {
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum;
|
|
}
|
|
}
|
|
|
|
__global__ void gpuRegionLayer(
|
|
const float* input, float* softmax, int* num_detections, float* detection_boxes, float* detection_scores,
|
|
int* detection_classes, const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX,
|
|
const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float* anchors)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
|
|
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
|
|
|
|
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
|
|
return;
|
|
|
|
const int numGridCells = gridSizeX * gridSizeY;
|
|
const int bbindex = y_id * gridSizeX + x_id;
|
|
|
|
const float objectness
|
|
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
|
|
|
|
if (objectness < scoreThreshold)
|
|
return;
|
|
|
|
int count = (int)atomicAdd(num_detections, 1);
|
|
|
|
float x
|
|
= (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)])
|
|
+ x_id) * netWidth / gridSizeX;
|
|
|
|
float y
|
|
= (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)])
|
|
+ y_id) * netHeight / gridSizeY;
|
|
|
|
float w
|
|
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)])
|
|
* anchors[z_id * 2] * netWidth / gridSizeX;
|
|
|
|
float h
|
|
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)])
|
|
* anchors[z_id * 2 + 1] * netHeight / gridSizeY;
|
|
|
|
softmaxGPU(input, bbindex, numGridCells, z_id, numOutputClasses, 1.0, softmax);
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numOutputClasses; ++i)
|
|
{
|
|
float prob
|
|
= softmax[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
|
|
|
if (prob > maxProb)
|
|
{
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
|
|
detection_boxes[count * 4 + 0] = x - 0.5 * w;
|
|
detection_boxes[count * 4 + 1] = y - 0.5 * h;
|
|
detection_boxes[count * 4 + 2] = x + 0.5 * w;
|
|
detection_boxes[count * 4 + 3] = y + 0.5 * h;
|
|
detection_scores[count] = objectness * maxProb;
|
|
detection_classes[count] = maxIndex;
|
|
}
|
|
|
|
cudaError_t cudaRegionLayer(
|
|
const void* input, void* softmax, void* num_detections, void* detection_boxes, void* detection_scores,
|
|
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
|
|
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
|
|
const uint& numBBoxes, const void* anchors, cudaStream_t stream);
|
|
|
|
cudaError_t cudaRegionLayer(
|
|
const void* input, void* softmax, void* num_detections, void* detection_boxes, void* detection_scores,
|
|
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
|
|
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
|
|
const uint& numBBoxes, const void* anchors, cudaStream_t stream)
|
|
{
|
|
dim3 threads_per_block(16, 16, 4);
|
|
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
|
|
(gridSizeY / threads_per_block.y) + 1,
|
|
(numBBoxes / threads_per_block.z) + 1);
|
|
|
|
for (unsigned int batch = 0; batch < batchSize; ++batch)
|
|
{
|
|
gpuRegionLayer<<<number_of_blocks, threads_per_block, 0, stream>>>(
|
|
reinterpret_cast<const float*>(input) + (batch * inputSize),
|
|
reinterpret_cast<float*>(softmax) + (batch * inputSize),
|
|
reinterpret_cast<int*>(num_detections) + (batch),
|
|
reinterpret_cast<float*>(detection_boxes) + (batch * 4 * outputSize),
|
|
reinterpret_cast<float*>(detection_scores) + (batch * outputSize),
|
|
reinterpret_cast<int*>(detection_classes) + (batch * outputSize),
|
|
scoreThreshold, netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes,
|
|
reinterpret_cast<const float*>(anchors));
|
|
}
|
|
return cudaGetLastError();
|
|
}
|