Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yoloForward_v2.cu
Marcos Luciano 555152064e Minor fixes
2022-02-21 23:46:29 -03:00

121 lines
4.6 KiB
Plaintext

/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
__device__ void softmaxGPU(
const float* input, const int bbindex, const int numGridCells, uint z_id,
const uint numOutputClasses, float temp, float* output)
{
int i;
float sum = 0;
float largest = -INFINITY;
for (i = 0; i < numOutputClasses; ++i) {
int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
largest = (val>largest) ? val : largest;
}
for (i = 0; i < numOutputClasses; ++i) {
float e = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp);
sum += e;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e;
}
for (i = 0; i < numOutputClasses; ++i) {
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum;
}
}
__global__ void gpuRegionLayer(
const float* input, float* output, float* softmax, const uint netWidth, const uint netHeight,
const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes,
const float* anchors)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes))
{
return;
}
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
= (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)])
+ x_id) * netWidth / gridSizeX;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
= (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)])
+ y_id) * netHeight / gridSizeY;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)])
* anchors[z_id * 2] * netWidth / gridSizeX;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)])
* anchors[z_id * 2 + 1] * netHeight / gridSizeY;
softmaxGPU(input, bbindex, numGridCells, z_id, numOutputClasses, 1.0, softmax);
const float objectness
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
float maxProb = 0.0f;
int maxIndex = -1;
for (uint i = 0; i < numOutputClasses; ++i)
{
float prob
= softmax[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
if (prob > maxProb)
{
maxProb = prob;
maxIndex = i;
}
}
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
= objectness * maxProb;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 5)]
= maxIndex;
}
cudaError_t cudaRegionLayer(
const void* input, void* output, void* softmax, const uint& batchSize, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t& outputSize, const void* anchors, cudaStream_t stream);
cudaError_t cudaRegionLayer(
const void* input, void* output, void* softmax, const uint& batchSize, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t& outputSize, const void* anchors, cudaStream_t stream)
{
dim3 threads_per_block(16, 16, 4);
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
(gridSizeY / threads_per_block.y) + 1,
(numBBoxes / threads_per_block.z) + 1);
for (unsigned int batch = 0; batch < batchSize; ++batch)
{
gpuRegionLayer<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*>(input) + (batch * outputSize),
reinterpret_cast<float*>(output) + (batch * outputSize),
reinterpret_cast<float*>(softmax) + (batch * outputSize),
netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes,
reinterpret_cast<const float*>(anchors));
}
return cudaGetLastError();
}