Files
deepstream_yolo/utils/export_rtdetr_ultralytics.py
2024-11-07 11:25:17 -03:00

116 lines
3.8 KiB
Python
Executable File

import os
import torch
import torch.nn as nn
from copy import deepcopy
from ultralytics import RTDETR
class DeepStreamOutput(nn.Module):
def __init__(self, img_size):
super().__init__()
self.img_size = img_size
def forward(self, x):
boxes = x[:, :, :4]
convert_matrix = torch.tensor(
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
)
boxes @= convert_matrix
boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def rtdetr_ultralytics_export(weights, device):
model = RTDETR(weights)
model = deepcopy(model.model).to(device)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.float()
model = model.fuse()
for k, m in model.named_modules():
if m.__class__.__name__ in ('Detect', 'RTDETRDecoder'):
m.dynamic = False
m.export = True
m.format = 'onnx'
elif m.__class__.__name__ == 'C2f':
m.forward = m.forward_split
return model
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print(f'\nStarting: {args.weights}')
print('Opening RT-DETR Ultralytics model')
device = torch.device('cpu')
model = rtdetr_ultralytics_export(args.weights, device)
if len(model.names.keys()) > 0:
print('Creating labels.txt file')
with open('labels.txt', 'w', encoding='utf-8') as f:
for name in model.names.values():
f.write(f'{name}\n')
img_size = args.size * 2 if len(args.size) == 1 else args.size
model = nn.Sequential(model, DeepStreamOutput(img_size))
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying is not available for this model')
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream RT-DETR Ultralytics conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
main(args)