Files
deepstream_yolo/utils/export_ppyoloe.py
2024-11-07 11:25:17 -03:00

122 lines
3.9 KiB
Python

import os
import onnx
import paddle
import paddle.nn as nn
from ppdet.engine import Trainer
from ppdet.utils.cli import ArgsParser
from ppdet.slim import build_slim_model
from ppdet.data.source.category import get_categories
from ppdet.utils.check import check_version, check_config
from ppdet.core.workspace import load_config, merge_config
class DeepStreamOutput(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, x):
boxes = x['bbox']
x['bbox_num'] = x['bbox_num'].transpose([0, 2, 1])
scores = paddle.max(x['bbox_num'], axis=-1, keepdim=True)
labels = paddle.argmax(x['bbox_num'], axis=-1, keepdim=True)
return paddle.concat((boxes, scores, paddle.cast(labels, dtype=boxes.dtype)), axis=-1)
class DeepStreamInput(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, x):
y = {}
y['image'] = x['image']
y['scale_factor'] = paddle.to_tensor([1.0, 1.0], dtype=x['image'].dtype)
return y
def ppyoloe_export(FLAGS):
cfg = load_config(FLAGS.config)
FLAGS.opt['weights'] = FLAGS.weights
FLAGS.opt['exclude_nms'] = True
merge_config(FLAGS.opt)
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
merge_config(FLAGS.opt)
check_config(cfg)
check_version()
trainer = Trainer(cfg, mode='test')
trainer.load_weights(cfg.weights)
trainer.model.eval()
if not os.path.exists('.tmp'):
os.makedirs('.tmp')
static_model, _ = trainer._get_infer_cfg_and_input_spec('.tmp')
os.system('rm -r .tmp')
return trainer.cfg, static_model
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore')
def main(FLAGS):
suppress_warnings()
print(f'\nStarting: {FLAGS.weights}')
print('Opening PPYOLOE model')
paddle.set_device('cpu')
cfg, model = ppyoloe_export(FLAGS)
anno_file = cfg['TestDataset'].get_anno()
if os.path.isfile(anno_file):
_, catid2name = get_categories(cfg['metric'], anno_file, 'detection_arch')
print('Creating labels.txt file')
with open('labels.txt', 'w', encoding='utf-8') as f:
for name in catid2name.values():
f.write(f'{name}\n')
model = nn.Sequential(DeepStreamInput(), model, DeepStreamOutput())
img_size = [cfg.eval_height, cfg.eval_width]
onnx_input_im = {}
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32')
onnx_output_file = f'{FLAGS.weights}.onnx'
print('Exporting the model to ONNX')
paddle.onnx.export(model, FLAGS.weights, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
if FLAGS.simplify:
print('Simplifying the ONNX model')
import onnxslim
model_onnx = onnx.load(onnx_output_file)
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
parser = ArgsParser()
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pdparams) file path (required)')
parser.add_argument('--slim_config', default=None, type=str, help='Slim configuration file of slim method')
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
elif args.dynamic:
args.batch = None
return args
if __name__ == '__main__':
FLAGS = parse_args()
main(FLAGS)