Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/calibrator.cpp
2023-01-27 15:56:00 -03:00

134 lines
4.1 KiB
C++

/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "calibrator.h"
#include <fstream>
#include <iterator>
Int8EntropyCalibrator2::Int8EntropyCalibrator2(const int& batchsize, const int& channels, const int& height,
const int& width, const int& letterbox, const std::string& imgPath,
const std::string& calibTablePath) : batchSize(batchsize), inputC(channels), inputH(height), inputW(width),
letterBox(letterbox), calibTablePath(calibTablePath), imageIndex(0)
{
inputCount = batchsize * channels * height * width;
std::fstream f(imgPath);
if (f.is_open()) {
std::string temp;
while (std::getline(f, temp))
imgPaths.push_back(temp);
}
batchData = new float[inputCount];
CUDA_CHECK(cudaMalloc(&deviceInput, inputCount * sizeof(float)));
}
Int8EntropyCalibrator2::~Int8EntropyCalibrator2()
{
CUDA_CHECK(cudaFree(deviceInput));
if (batchData)
delete[] batchData;
}
int
Int8EntropyCalibrator2::getBatchSize() const noexcept
{
return batchSize;
}
bool
Int8EntropyCalibrator2::getBatch(void** bindings, const char** names, int nbBindings) noexcept
{
if (imageIndex + batchSize > uint(imgPaths.size()))
return false;
float* ptr = batchData;
for (size_t i = imageIndex; i < imageIndex + batchSize; ++i) {
cv::Mat img = cv::imread(imgPaths[i], cv::IMREAD_COLOR);
std::vector<float> inputData = prepareImage(img, inputC, inputH, inputW, letterBox);
int len = (int) (inputData.size());
memcpy(ptr, inputData.data(), len * sizeof(float));
ptr += inputData.size();
std::cout << "Load image: " << imgPaths[i] << std::endl;
std::cout << "Progress: " << (i + 1)*100. / imgPaths.size() << "%" << std::endl;
}
imageIndex += batchSize;
CUDA_CHECK(cudaMemcpy(deviceInput, batchData, inputCount * sizeof(float), cudaMemcpyHostToDevice));
bindings[0] = deviceInput;
return true;
}
const void*
Int8EntropyCalibrator2::readCalibrationCache(std::size_t &length) noexcept
{
calibrationCache.clear();
std::ifstream input(calibTablePath, std::ios::binary);
input >> std::noskipws;
if (readCache && input.good())
std::copy(std::istream_iterator<char>(input), std::istream_iterator<char>(), std::back_inserter(calibrationCache));
length = calibrationCache.size();
return length ? calibrationCache.data() : nullptr;
}
void
Int8EntropyCalibrator2::writeCalibrationCache(const void* cache, std::size_t length) noexcept
{
std::ofstream output(calibTablePath, std::ios::binary);
output.write(reinterpret_cast<const char*>(cache), length);
}
std::vector<float>
prepareImage(cv::Mat& img, int input_c, int input_h, int input_w, int letter_box)
{
cv::Mat out;
int image_w = img.cols;
int image_h = img.rows;
if (image_w != input_w || image_h != input_h) {
if (letter_box == 1) {
float ratio_w = (float) image_w / (float) input_w;
float ratio_h = (float) image_h / (float) input_h;
if (ratio_w > ratio_h) {
int new_width = input_w * ratio_h;
int x = (image_w - new_width) / 2;
cv::Rect roi(abs(x), 0, new_width, image_h);
out = img(roi);
}
else if (ratio_w < ratio_h) {
int new_height = input_h * ratio_w;
int y = (image_h - new_height) / 2;
cv::Rect roi(0, abs(y), image_w, new_height);
out = img(roi);
}
else
out = img;
cv::resize(out, out, cv::Size(input_w, input_h), 0, 0, cv::INTER_CUBIC);
}
else {
cv::resize(img, out, cv::Size(input_w, input_h), 0, 0, cv::INTER_CUBIC);
}
cv::cvtColor(out, out, cv::COLOR_BGR2RGB);
}
else
cv::cvtColor(img, out, cv::COLOR_BGR2RGB);
if (input_c == 3)
out.convertTo(out, CV_32FC3, 1.0 / 255.0);
else
out.convertTo(out, CV_32FC1, 1.0 / 255.0);
std::vector<cv::Mat> input_channels(input_c);
cv::split(out, input_channels);
std::vector<float> result(input_h * input_w * input_c);
auto data = result.data();
int channelLength = input_h * input_w;
for (int i = 0; i < input_c; ++i) {
memcpy(data, input_channels[i].data, channelLength * sizeof(float));
data += channelLength;
}
return result;
}