Files
deepstream_yolo/utils/export_yolox.py
Marcos Luciano b2c4bee8dc Fix ONNX export
2023-05-29 21:54:43 -03:00

102 lines
3.1 KiB
Python

import os
import sys
import argparse
import warnings
import onnx
import torch
import torch.nn as nn
from yolox.exp import get_exp
from yolox.utils import replace_module
from yolox.models.network_blocks import SiLU
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
return torch.cat((boxes, scores * objectness, classes.float()), dim=2)
def suppress_warnings():
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
def yolox_export(weights, exp_file):
exp = get_exp(exp_file)
model = exp.get_model()
ckpt = torch.load(weights, map_location='cpu')
model.eval()
if 'model' in ckpt:
ckpt = ckpt['model']
model.load_state_dict(ckpt)
model = replace_module(model, nn.SiLU, SiLU)
model.head.decode_in_inference = True
return model, exp
def main(args):
suppress_warnings()
print('\nStarting: %s' % args.weights)
print('Opening YOLOX model')
device = torch.device('cpu')
model, exp = yolox_export(args.weights, args.exp)
model = nn.Sequential(model, DeepStreamOutput())
img_size = [exp.input_size[1], exp.input_size[0]]
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
print('Simplifying the ONNX model')
import onnxsim
model_onnx = onnx.load(onnx_output_file)
model_onnx, _ = onnxsim.simplify(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print('Done: %s\n' % onnx_output_file)
def parse_args():
parser = argparse.ArgumentParser(description='DeepStream YOLOX conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
parser.add_argument('-c', '--exp', required=True, help='Input exp (.py) file path (required)')
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.exp):
raise SystemExit('Invalid exp file')
return args
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args))