Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yoloForward_r.cu
Marcos Luciano f80aa10cf2 GPU Batched NMS
2022-06-19 12:12:04 -03:00

106 lines
4.3 KiB
Plaintext

/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include <stdint.h>
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
__global__ void gpuYoloLayer_r(
const float* input, int* d_indexes, float* d_scores, float* d_boxes, int* d_classes, int* countData,
const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX, const uint gridSizeY,
const uint numOutputClasses, const uint numBBoxes, const float scaleXY, const float* anchors, const int* mask)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
const float objectness
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);
const float alpha = scaleXY;
const float beta = -0.5 * (scaleXY - 1);
float x
= (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)])
* alpha + beta + x_id) * netWidth / gridSizeX;
float y
= (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)])
* alpha + beta + y_id) * netHeight / gridSizeY;
float w
= __powf(sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]) * 2, 2)
* anchors[mask[z_id] * 2];
float h
= __powf(sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]) * 2, 2)
* anchors[mask[z_id] * 2 + 1];
float maxProb = 0.0f;
int maxIndex = -1;
for (uint i = 0; i < numOutputClasses; ++i)
{
float prob
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]);
if (prob > maxProb)
{
maxProb = prob;
maxIndex = i;
}
}
d_indexes[count] = count;
d_scores[count] = objectness * maxProb + 1.f;
d_boxes[count * 4 + 0] = x - 0.5 * w;
d_boxes[count * 4 + 1] = y - 0.5 * h;
d_boxes[count * 4 + 2] = x + 0.5 * w;
d_boxes[count * 4 + 3] = y + 0.5 * h;
d_classes[count] = maxIndex;
}
cudaError_t cudaYoloLayer_r(
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_r(
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream)
{
dim3 threads_per_block(16, 16, 4);
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
(gridSizeY / threads_per_block.y) + 1,
(numBBoxes / threads_per_block.z) + 1);
for (unsigned int batch = 0; batch < batchSize; ++batch)
{
gpuYoloLayer_r<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*>(input) + (batch * inputSize),
reinterpret_cast<int*>(d_indexes) + (batch * outputSize),
reinterpret_cast<float*>(d_scores) + (batch * outputSize),
reinterpret_cast<float*>(d_boxes) + (batch * 4 * outputSize),
reinterpret_cast<int*>(d_classes) + (batch * outputSize), reinterpret_cast<int*>(countData) + (batch),
scoreThreshold, netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, scaleXY,
reinterpret_cast<const float*>(anchors), reinterpret_cast<const int*>(mask));
}
return cudaGetLastError();
}