Files
deepstream_yolo/non_square/nvdsinfer_custom_impl_Yolo/yolo.cpp
2021-02-19 16:51:37 +02:00

470 lines
20 KiB
C++

/*
* Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "yolo.h"
#include "yoloPlugins.h"
void orderParams(std::vector<std::vector<int>> *maskVector) {
std::vector<std::vector<int>> maskinput = *maskVector;
std::vector<int> maskPartial;
for (uint i = 0; i < maskinput.size(); i++) {
for (uint j = i + 1; j < maskinput.size(); j++) {
if (maskinput[i][0] <= maskinput[j][0]) {
maskPartial = maskinput[i];
maskinput[i] = maskinput[j];
maskinput[j] = maskPartial;
}
}
}
*maskVector = maskinput;
}
Yolo::Yolo(const NetworkInfo& networkInfo)
: m_NetworkType(networkInfo.networkType), // YOLO type
m_ConfigFilePath(networkInfo.configFilePath), // YOLO cfg
m_WtsFilePath(networkInfo.wtsFilePath), // YOLO weights
m_DeviceType(networkInfo.deviceType), // kDLA, kGPU
m_InputBlobName(networkInfo.inputBlobName), // data
m_InputH(0),
m_InputW(0),
m_InputC(0),
m_InputSize(0)
{}
Yolo::~Yolo()
{
destroyNetworkUtils();
}
nvinfer1::ICudaEngine *Yolo::createEngine (nvinfer1::IBuilder* builder)
{
assert (builder);
std::vector<float> weights = loadWeights(m_WtsFilePath, m_NetworkType);
std::vector<nvinfer1::Weights> trtWeights;
nvinfer1::INetworkDefinition *network = builder->createNetwork();
if (parseModel(*network) != NVDSINFER_SUCCESS) {
network->destroy();
return nullptr;
}
// Build the engine
std::cout << "Building the TensorRT Engine" << std::endl;
nvinfer1::ICudaEngine * engine = builder->buildCudaEngine(*network);
if (engine) {
std::cout << "Building complete\n" << std::endl;
} else {
std::cerr << "Building engine failed\n" << std::endl;
}
// destroy
network->destroy();
return engine;
}
NvDsInferStatus Yolo::parseModel(nvinfer1::INetworkDefinition& network) {
destroyNetworkUtils();
m_ConfigBlocks = parseConfigFile(m_ConfigFilePath);
parseConfigBlocks();
orderParams(&m_OutputMasks);
std::vector<float> weights = loadWeights(m_WtsFilePath, m_NetworkType);
// build yolo network
std::cout << "Building YOLO network" << std::endl;
NvDsInferStatus status = buildYoloNetwork(weights, network);
if (status == NVDSINFER_SUCCESS) {
std::cout << "Building YOLO network complete" << std::endl;
} else {
std::cerr << "Building YOLO network failed" << std::endl;
}
return status;
}
NvDsInferStatus Yolo::buildYoloNetwork(
std::vector<float>& weights, nvinfer1::INetworkDefinition& network) {
int weightPtr = 0;
int channels = m_InputC;
nvinfer1::ITensor* data =
network.addInput(m_InputBlobName.c_str(), nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{static_cast<int>(m_InputC),
static_cast<int>(m_InputH), static_cast<int>(m_InputW)});
assert(data != nullptr && data->getDimensions().nbDims > 0);
nvinfer1::ITensor* previous = data;
std::vector<nvinfer1::ITensor*> tensorOutputs;
uint outputTensorCount = 0;
// build the network using the network API
for (uint i = 0; i < m_ConfigBlocks.size(); ++i) {
// check if num. of channels is correct
assert(getNumChannels(previous) == channels);
std::string layerIndex = "(" + std::to_string(tensorOutputs.size()) + ")";
if (m_ConfigBlocks.at(i).at("type") == "net") {
printLayerInfo("", "layer", " input", " outup", "weightPtr");
}
else if (m_ConfigBlocks.at(i).at("type") == "convolutional") {
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = convolutionalLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, channels, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "conv_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "dropout") {
assert(m_ConfigBlocks.at(i).find("probability") != m_ConfigBlocks.at(i).end());
//float probability = std::stof(m_ConfigBlocks.at(i).at("probability"));
//nvinfer1::ILayer* out = dropoutLayer(probability, previous, &network);
//previous = out->getOutput(0);
//Skip dropout layer
assert(previous != nullptr);
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "dropout", " -", " -", " -");
}
else if (m_ConfigBlocks.at(i).at("type") == "shortcut") {
assert(m_ConfigBlocks.at(i).find("activation") != m_ConfigBlocks.at(i).end());
assert(m_ConfigBlocks.at(i).find("from") != m_ConfigBlocks.at(i).end());
std::string activation = m_ConfigBlocks.at(i).at("activation");
int from = stoi(m_ConfigBlocks.at(i).at("from"));
if (from > 0) {
from = from - i + 1;
}
assert((i - 2 >= 0) && (i - 2 < tensorOutputs.size()));
assert((i + from - 1 >= 0) && (i + from - 1 < tensorOutputs.size()));
assert(i + from - 1 < i - 2);
std::string inputVol = dimsToString(previous->getDimensions());
std::string shortcutVol = dimsToString(tensorOutputs[i + from - 1]->getDimensions());
nvinfer1::ILayer* out = shortcutLayer(i, activation, inputVol, shortcutVol, previous, tensorOutputs[i + from - 1], &network);
previous = out->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "shortcut_" + m_ConfigBlocks.at(i).at("activation") + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerType, " -", outputVol, " -");
if (inputVol != shortcutVol) {
std::cout << inputVol << " +" << shortcutVol << std::endl;
}
}
else if (m_ConfigBlocks.at(i).at("type") == "route") {
assert(m_ConfigBlocks.at(i).find("layers") != m_ConfigBlocks.at(i).end());
nvinfer1::ILayer* out = routeLayer(i, m_ConfigBlocks.at(i), tensorOutputs, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "route", " -", outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "upsample") {
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = upsampleLayer(i - 1, m_ConfigBlocks[i], weights, m_TrtWeights, channels, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "upsample", inputVol, outputVol, " -");
}
else if (m_ConfigBlocks.at(i).at("type") == "maxpool") {
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = maxpoolLayer(i, m_ConfigBlocks.at(i), previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "maxpool", inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "yolo") {
nvinfer1::Dims prevTensorDims = previous->getDimensions();
//assert(prevTensorDims.d[1] == prevTensorDims.d[2]);
TensorInfo& curYoloTensor = m_OutputTensors.at(outputTensorCount);
curYoloTensor.gridSizeY = prevTensorDims.d[1];
curYoloTensor.gridSizeX = prevTensorDims.d[2];
curYoloTensor.stride = m_InputH / curYoloTensor.gridSizeY;
m_OutputTensors.at(outputTensorCount).volume = curYoloTensor.gridSizeY
* curYoloTensor.gridSizeX
* (curYoloTensor.numBBoxes * (5 + curYoloTensor.numClasses));
std::string layerName = "yolo_" + std::to_string(i);
curYoloTensor.blobName = layerName;
int new_coords = 0;
float scale_x_y = 1;
float beta_nms = 0.45;
if (m_ConfigBlocks.at(i).find("new_coords") != m_ConfigBlocks.at(i).end()) {
new_coords = std::stoi(m_ConfigBlocks.at(i).at("new_coords"));
}
if (m_ConfigBlocks.at(i).find("scale_x_y") != m_ConfigBlocks.at(i).end()) {
scale_x_y = std::stof(m_ConfigBlocks.at(i).at("scale_x_y"));
}
if (m_ConfigBlocks.at(i).find("beta_nms") != m_ConfigBlocks.at(i).end()) {
beta_nms = std::stof(m_ConfigBlocks.at(i).at("beta_nms"));
}
nvinfer1::IPluginV2* yoloPlugin
= new YoloLayer(m_OutputTensors.at(outputTensorCount).numBBoxes,
m_OutputTensors.at(outputTensorCount).numClasses,
m_OutputTensors.at(outputTensorCount).gridSizeX,
m_OutputTensors.at(outputTensorCount).gridSizeY,
1, new_coords, scale_x_y, beta_nms,
curYoloTensor.anchors,
m_OutputMasks);
assert(yoloPlugin != nullptr);
nvinfer1::IPluginV2Layer* yolo =
network.addPluginV2(&previous, 1, *yoloPlugin);
assert(yolo != nullptr);
yolo->setName(layerName.c_str());
std::string inputVol = dimsToString(previous->getDimensions());
previous = yolo->getOutput(0);
assert(previous != nullptr);
previous->setName(layerName.c_str());
std::string outputVol = dimsToString(previous->getDimensions());
network.markOutput(*previous);
channels = getNumChannels(previous);
tensorOutputs.push_back(yolo->getOutput(0));
printLayerInfo(layerIndex, "yolo", inputVol, outputVol, std::to_string(weightPtr));
++outputTensorCount;
}
//YOLOv2 support
else if (m_ConfigBlocks.at(i).at("type") == "region") {
nvinfer1::Dims prevTensorDims = previous->getDimensions();
//assert(prevTensorDims.d[1] == prevTensorDims.d[2]);
TensorInfo& curRegionTensor = m_OutputTensors.at(outputTensorCount);
curRegionTensor.gridSizeY = prevTensorDims.d[1];
curRegionTensor.gridSizeX = prevTensorDims.d[2];
curRegionTensor.stride = m_InputH / curRegionTensor.gridSizeY;
m_OutputTensors.at(outputTensorCount).volume = curRegionTensor.gridSizeY
* curRegionTensor.gridSizeX
* (curRegionTensor.numBBoxes * (5 + curRegionTensor.numClasses));
std::string layerName = "region_" + std::to_string(i);
curRegionTensor.blobName = layerName;
std::vector<std::vector<int>> mask;
nvinfer1::IPluginV2* regionPlugin
= new YoloLayer(curRegionTensor.numBBoxes,
curRegionTensor.numClasses,
curRegionTensor.gridSizeX,
curRegionTensor.gridSizeY,
0, 0, 1.0, 0,
curRegionTensor.anchors,
mask);
assert(regionPlugin != nullptr);
nvinfer1::IPluginV2Layer* region =
network.addPluginV2(&previous, 1, *regionPlugin);
assert(region != nullptr);
region->setName(layerName.c_str());
std::string inputVol = dimsToString(previous->getDimensions());
previous = region->getOutput(0);
assert(previous != nullptr);
previous->setName(layerName.c_str());
std::string outputVol = dimsToString(previous->getDimensions());
network.markOutput(*previous);
channels = getNumChannels(previous);
tensorOutputs.push_back(region->getOutput(0));
printLayerInfo(layerIndex, "region", inputVol, outputVol, std::to_string(weightPtr));
++outputTensorCount;
}
else if (m_ConfigBlocks.at(i).at("type") == "reorg") {
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::IPluginV2* reorgPlugin = createReorgPlugin(2);
assert(reorgPlugin != nullptr);
nvinfer1::IPluginV2Layer* reorg =
network.addPluginV2(&previous, 1, *reorgPlugin);
assert(reorg != nullptr);
std::string layerName = "reorg_" + std::to_string(i);
reorg->setName(layerName.c_str());
previous = reorg->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
channels = getNumChannels(previous);
tensorOutputs.push_back(reorg->getOutput(0));
printLayerInfo(layerIndex, "reorg", inputVol, outputVol, std::to_string(weightPtr));
}
else
{
std::cout << "Unsupported layer type --> \""
<< m_ConfigBlocks.at(i).at("type") << "\"" << std::endl;
assert(0);
}
}
if ((int)weights.size() != weightPtr)
{
std::cout << "Number of unused weights left: " << weights.size() - weightPtr << std::endl;
assert(0);
}
std::cout << "Output YOLO blob names: " << std::endl;
for (auto& tensor : m_OutputTensors) {
std::cout << tensor.blobName << std::endl;
}
int nbLayers = network.getNbLayers();
std::cout << "Total number of YOLO layers: " << nbLayers << std::endl;
return NVDSINFER_SUCCESS;
}
std::vector<std::map<std::string, std::string>>
Yolo::parseConfigFile (const std::string cfgFilePath)
{
assert(fileExists(cfgFilePath));
std::ifstream file(cfgFilePath);
assert(file.good());
std::string line;
std::vector<std::map<std::string, std::string>> blocks;
std::map<std::string, std::string> block;
while (getline(file, line))
{
if (line.size() == 0) continue;
if (line.front() == '#') continue;
line = trim(line);
if (line.front() == '[')
{
if (block.size() > 0)
{
blocks.push_back(block);
block.clear();
}
std::string key = "type";
std::string value = trim(line.substr(1, line.size() - 2));
block.insert(std::pair<std::string, std::string>(key, value));
}
else
{
int cpos = line.find('=');
std::string key = trim(line.substr(0, cpos));
std::string value = trim(line.substr(cpos + 1));
block.insert(std::pair<std::string, std::string>(key, value));
}
}
blocks.push_back(block);
return blocks;
}
void Yolo::parseConfigBlocks()
{
for (auto block : m_ConfigBlocks) {
if (block.at("type") == "net")
{
assert((block.find("height") != block.end())
&& "Missing 'height' param in network cfg");
assert((block.find("width") != block.end()) && "Missing 'width' param in network cfg");
assert((block.find("channels") != block.end())
&& "Missing 'channels' param in network cfg");
m_InputH = std::stoul(block.at("height"));
m_InputW = std::stoul(block.at("width"));
m_InputC = std::stoul(block.at("channels"));
//assert(m_InputW == m_InputH);
m_InputSize = m_InputC * m_InputH * m_InputW;
}
else if ((block.at("type") == "region") || (block.at("type") == "yolo"))
{
assert((block.find("num") != block.end())
&& std::string("Missing 'num' param in " + block.at("type") + " layer").c_str());
assert((block.find("classes") != block.end())
&& std::string("Missing 'classes' param in " + block.at("type") + " layer")
.c_str());
assert((block.find("anchors") != block.end())
&& std::string("Missing 'anchors' param in " + block.at("type") + " layer")
.c_str());
TensorInfo outputTensor;
std::string anchorString = block.at("anchors");
while (!anchorString.empty())
{
int npos = anchorString.find_first_of(',');
if (npos != -1)
{
float anchor = std::stof(trim(anchorString.substr(0, npos)));
outputTensor.anchors.push_back(anchor);
anchorString.erase(0, npos + 1);
}
else
{
float anchor = std::stof(trim(anchorString));
outputTensor.anchors.push_back(anchor);
break;
}
}
if (block.find("mask") != block.end()) {
std::string maskString = block.at("mask");
std::vector<int> pMASKS;
while (!maskString.empty())
{
int npos = maskString.find_first_of(',');
if (npos != -1)
{
int mask = std::stoul(trim(maskString.substr(0, npos)));
pMASKS.push_back(mask);
outputTensor.masks.push_back(mask);
maskString.erase(0, npos + 1);
}
else
{
int mask = std::stoul(trim(maskString));
pMASKS.push_back(mask);
outputTensor.masks.push_back(mask);
break;
}
}
m_OutputMasks.push_back(pMASKS);
}
outputTensor.numBBoxes = outputTensor.masks.size() > 0
? outputTensor.masks.size()
: std::stoul(trim(block.at("num")));
outputTensor.numClasses = std::stoul(block.at("classes"));
m_OutputTensors.push_back(outputTensor);
}
}
}
void Yolo::destroyNetworkUtils() {
// deallocate the weights
for (uint i = 0; i < m_TrtWeights.size(); ++i) {
if (m_TrtWeights[i].count > 0)
free(const_cast<void*>(m_TrtWeights[i].values));
}
m_TrtWeights.clear();
}