195 lines
7.4 KiB
Plaintext
195 lines
7.4 KiB
Plaintext
/*
|
|
* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Edited by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <thrust/host_vector.h>
|
|
#include <thrust/device_vector.h>
|
|
|
|
#include "nvdsinfer_custom_impl.h"
|
|
|
|
extern "C" bool
|
|
NvDsInferParseYoloCuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
|
|
|
|
extern "C" bool
|
|
NvDsInferParseYoloECuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
|
|
|
|
__global__ void decodeTensorYoloCuda(NvDsInferParseObjectInfo *binfo, float* boxes, float* scores, float* classes,
|
|
int outputSize, int netW, int netH, float minPreclusterThreshold)
|
|
{
|
|
int x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (x_id >= outputSize)
|
|
return;
|
|
|
|
float maxProb = scores[x_id];
|
|
int maxIndex = (int) classes[x_id];
|
|
|
|
if (maxProb < minPreclusterThreshold) {
|
|
binfo[x_id].detectionConfidence = 0.0;
|
|
return;
|
|
}
|
|
|
|
float bxc = boxes[x_id * 4 + 0];
|
|
float byc = boxes[x_id * 4 + 1];
|
|
float bw = boxes[x_id * 4 + 2];
|
|
float bh = boxes[x_id * 4 + 3];
|
|
|
|
float x0 = bxc - bw / 2;
|
|
float y0 = byc - bh / 2;
|
|
float x1 = x0 + bw;
|
|
float y1 = y0 + bh;
|
|
|
|
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
|
|
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
|
|
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
|
|
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
|
|
|
|
binfo[x_id].left = x0;
|
|
binfo[x_id].top = y0;
|
|
binfo[x_id].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
|
|
binfo[x_id].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
|
|
binfo[x_id].detectionConfidence = maxProb;
|
|
binfo[x_id].classId = maxIndex;
|
|
}
|
|
|
|
__global__ void decodeTensorYoloECuda(NvDsInferParseObjectInfo *binfo, float* boxes, float* scores, float* classes,
|
|
int outputSize, int netW, int netH, float minPreclusterThreshold)
|
|
{
|
|
int x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (x_id >= outputSize)
|
|
return;
|
|
|
|
float maxProb = scores[x_id];
|
|
int maxIndex = (int) classes[x_id];
|
|
|
|
if (maxProb < minPreclusterThreshold) {
|
|
binfo[x_id].detectionConfidence = 0.0;
|
|
return;
|
|
}
|
|
|
|
float x0 = boxes[x_id * 4 + 0];
|
|
float y0 = boxes[x_id * 4 + 1];
|
|
float x1 = boxes[x_id * 4 + 2];
|
|
float y1 = boxes[x_id * 4 + 3];
|
|
|
|
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
|
|
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
|
|
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
|
|
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
|
|
|
|
binfo[x_id].left = x0;
|
|
binfo[x_id].top = y0;
|
|
binfo[x_id].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
|
|
binfo[x_id].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
|
|
binfo[x_id].detectionConfidence = maxProb;
|
|
binfo[x_id].classId = maxIndex;
|
|
}
|
|
|
|
static bool NvDsInferParseCustomYoloCuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const NvDsInferLayerInfo& boxes = outputLayersInfo[0];
|
|
const NvDsInferLayerInfo& scores = outputLayersInfo[1];
|
|
const NvDsInferLayerInfo& classes = outputLayersInfo[2];
|
|
|
|
const int outputSize = boxes.inferDims.d[0];
|
|
|
|
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
|
|
|
|
float minPreclusterThreshold = *(std::min_element(detectionParams.perClassPreclusterThreshold.begin(),
|
|
detectionParams.perClassPreclusterThreshold.end()));
|
|
|
|
int threads_per_block = 1024;
|
|
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
|
|
|
|
decodeTensorYoloCuda<<<number_of_blocks, threads_per_block>>>(
|
|
thrust::raw_pointer_cast(objects.data()), (float*) (boxes.buffer), (float*) (scores.buffer),
|
|
(float*) (classes.buffer), outputSize, networkInfo.width, networkInfo.height, minPreclusterThreshold);
|
|
|
|
objectList.resize(outputSize);
|
|
thrust::copy(objects.begin(), objects.end(), objectList.begin());
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool NvDsInferParseCustomYoloECuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const NvDsInferLayerInfo& boxes = outputLayersInfo[0];
|
|
const NvDsInferLayerInfo& scores = outputLayersInfo[1];
|
|
const NvDsInferLayerInfo& classes = outputLayersInfo[2];
|
|
|
|
const int outputSize = boxes.inferDims.d[0];
|
|
|
|
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
|
|
|
|
float minPreclusterThreshold = *(std::min_element(detectionParams.perClassPreclusterThreshold.begin(),
|
|
detectionParams.perClassPreclusterThreshold.end()));
|
|
|
|
int threads_per_block = 1024;
|
|
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
|
|
|
|
decodeTensorYoloECuda<<<number_of_blocks, threads_per_block>>>(
|
|
thrust::raw_pointer_cast(objects.data()), (float*) (boxes.buffer), (float*) (scores.buffer),
|
|
(float*) (classes.buffer), outputSize, networkInfo.width, networkInfo.height, minPreclusterThreshold);
|
|
|
|
objectList.resize(outputSize);
|
|
thrust::copy(objects.begin(), objects.end(), objectList.begin());
|
|
|
|
return true;
|
|
}
|
|
|
|
extern "C" bool
|
|
NvDsInferParseYoloCuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
return NvDsInferParseCustomYoloCuda(outputLayersInfo, networkInfo, detectionParams, objectList);
|
|
}
|
|
|
|
extern "C" bool
|
|
NvDsInferParseYoloECuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
return NvDsInferParseCustomYoloECuda(outputLayersInfo, networkInfo, detectionParams, objectList);
|
|
}
|
|
|
|
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloCuda);
|
|
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloECuda);
|