105 lines
3.5 KiB
Python
105 lines
3.5 KiB
Python
import os
|
|
import sys
|
|
import argparse
|
|
import warnings
|
|
import onnx
|
|
import torch
|
|
import torch.nn as nn
|
|
from super_gradients.training import models
|
|
|
|
|
|
class DeepStreamOutput(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
boxes = x[0]
|
|
scores, classes = torch.max(x[1], 2, keepdim=True)
|
|
return boxes, scores, classes
|
|
|
|
|
|
def suppress_warnings():
|
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
|
warnings.filterwarnings('ignore', category=UserWarning)
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
|
|
|
|
|
def yolonas_export(model_name, weights, num_classes, size):
|
|
img_size = size * 2 if len(size) == 1 else size
|
|
model = models.get(model_name, num_classes=num_classes, checkpoint_path=weights)
|
|
model.eval()
|
|
model.prep_model_for_conversion(input_size=[1, 3, *img_size])
|
|
return model
|
|
|
|
|
|
def main(args):
|
|
suppress_warnings()
|
|
|
|
print('\nStarting: %s' % args.weights)
|
|
|
|
print('Opening YOLO-NAS model\n')
|
|
|
|
device = torch.device('cpu')
|
|
model = yolonas_export(args.model, args.weights, args.classes, args.size)
|
|
|
|
model = nn.Sequential(model, DeepStreamOutput())
|
|
|
|
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
|
|
|
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
|
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
|
|
|
dynamic_axes = {
|
|
'input': {
|
|
0: 'batch'
|
|
},
|
|
'boxes': {
|
|
0: 'batch'
|
|
},
|
|
'scores': {
|
|
0: 'batch'
|
|
},
|
|
'classes': {
|
|
0: 'batch'
|
|
}
|
|
}
|
|
|
|
print('\nExporting the model to ONNX')
|
|
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
|
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
|
dynamic_axes=dynamic_axes if args.dynamic else None)
|
|
|
|
if args.simplify:
|
|
print('Simplifying the ONNX model')
|
|
import onnxsim
|
|
model_onnx = onnx.load(onnx_output_file)
|
|
model_onnx, _ = onnxsim.simplify(model_onnx)
|
|
onnx.save(model_onnx, onnx_output_file)
|
|
|
|
print('Done: %s\n' % onnx_output_file)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='DeepStream YOLO-NAS conversion')
|
|
parser.add_argument('-m', '--model', required=True, help='Model name (required)')
|
|
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
|
|
parser.add_argument('-n', '--classes', type=int, default=80, help='Number of trained classes (default 80)')
|
|
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
|
parser.add_argument('--opset', type=int, default=14, help='ONNX opset version')
|
|
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
|
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
|
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
|
|
args = parser.parse_args()
|
|
if args.model == '':
|
|
raise SystemExit('Invalid model name')
|
|
if not os.path.isfile(args.weights):
|
|
raise SystemExit('Invalid weights file')
|
|
if args.dynamic and args.batch > 1:
|
|
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
sys.exit(main(args))
|