Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yoloPlugins.cpp
2021-11-19 00:03:07 -03:00

209 lines
6.5 KiB
C++

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "yoloPlugins.h"
#include "NvInferPlugin.h"
#include <cassert>
#include <iostream>
#include <memory>
int kNUM_CLASSES;
float kBETA_NMS;
std::vector<float> kANCHORS;
std::vector<std::vector<int>> kMASK;
namespace {
template <typename T>
void write(char*& buffer, const T& val)
{
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template <typename T>
void read(const char*& buffer, T& val)
{
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
}
cudaError_t cudaYoloLayer (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const uint modelCoords, const float modelScale, const uint modelType);
YoloLayer::YoloLayer (const void* data, size_t length)
{
const char *d = static_cast<const char*>(data);
read(d, m_NumBoxes);
read(d, m_NumClasses);
read(d, m_GridSizeX);
read(d, m_GridSizeY);
read(d, m_OutputSize);
read(d, m_type);
read(d, m_new_coords);
read(d, m_scale_x_y);
read(d, m_beta_nms);
uint anchorsSize;
read(d, anchorsSize);
for (uint i = 0; i < anchorsSize; i++) {
float result;
read(d, result);
m_Anchors.push_back(result);
}
uint maskSize;
read(d, maskSize);
for (uint i = 0; i < maskSize; i++) {
uint nMask;
read(d, nMask);
std::vector<int> pMask;
for (uint f = 0; f < nMask; f++) {
int result;
read(d, result);
pMask.push_back(result);
}
m_Mask.push_back(pMask);
}
kNUM_CLASSES = m_NumClasses;
kBETA_NMS = m_beta_nms;
kANCHORS = m_Anchors;
kMASK = m_Mask;
};
YoloLayer::YoloLayer (
const uint& numBoxes, const uint& numClasses, const uint& gridSizeX, const uint& gridSizeY, const uint model_type, const uint new_coords, const float scale_x_y, const float beta_nms, const std::vector<float> anchors, std::vector<std::vector<int>> mask) :
m_NumBoxes(numBoxes),
m_NumClasses(numClasses),
m_GridSizeX(gridSizeX),
m_GridSizeY(gridSizeY),
m_type(model_type),
m_new_coords(new_coords),
m_scale_x_y(scale_x_y),
m_beta_nms(beta_nms),
m_Anchors(anchors),
m_Mask(mask)
{
assert(m_NumBoxes > 0);
assert(m_NumClasses > 0);
assert(m_GridSizeX > 0);
assert(m_GridSizeY > 0);
m_OutputSize = m_GridSizeX * m_GridSizeY * (m_NumBoxes * (4 + 1 + m_NumClasses));
};
nvinfer1::Dims
YoloLayer::getOutputDimensions(
int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
{
assert(index == 0);
assert(nbInputDims == 1);
return inputs[0];
}
bool YoloLayer::supportsFormat (
nvinfer1::DataType type, nvinfer1::PluginFormat format) const noexcept {
return (type == nvinfer1::DataType::kFLOAT &&
format == nvinfer1::PluginFormat::kLINEAR);
}
void
YoloLayer::configureWithFormat (
const nvinfer1::Dims* inputDims, int nbInputs,
const nvinfer1::Dims* outputDims, int nbOutputs,
nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
{
assert(nbInputs == 1);
assert (format == nvinfer1::PluginFormat::kLINEAR);
assert(inputDims != nullptr);
}
int YoloLayer::enqueue(
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
CHECK(cudaYoloLayer(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_new_coords, m_scale_x_y, m_type));
return 0;
}
size_t YoloLayer::getSerializationSize() const noexcept
{
int anchorsSum = 1;
for (uint i = 0; i < m_Anchors.size(); i++) {
anchorsSum += 1;
}
int maskSum = 1;
for (uint i = 0; i < m_Mask.size(); i++) {
maskSum += 1;
for (uint f = 0; f < m_Mask[i].size(); f++) {
maskSum += 1;
}
}
return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSizeX) + sizeof(m_GridSizeY) + sizeof(m_OutputSize) + sizeof(m_type)
+ sizeof(m_new_coords) + sizeof(m_scale_x_y) + sizeof(m_beta_nms) + anchorsSum * sizeof(float) + maskSum * sizeof(int);
}
void YoloLayer::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer);
write(d, m_NumBoxes);
write(d, m_NumClasses);
write(d, m_GridSizeX);
write(d, m_GridSizeY);
write(d, m_OutputSize);
write(d, m_type);
write(d, m_new_coords);
write(d, m_scale_x_y);
write(d, m_beta_nms);
uint anchorsSize = m_Anchors.size();
write(d, anchorsSize);
for (uint i = 0; i < anchorsSize; i++) {
write(d, m_Anchors[i]);
}
uint maskSize = m_Mask.size();
write(d, maskSize);
for (uint i = 0; i < maskSize; i++) {
uint pMaskSize = m_Mask[i].size();
write(d, pMaskSize);
for (uint f = 0; f < pMaskSize; f++) {
write(d, m_Mask[i][f]);
}
}
kNUM_CLASSES = m_NumClasses;
kBETA_NMS = m_beta_nms;
kANCHORS = m_Anchors;
kMASK = m_Mask;
}
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
{
return new YoloLayer (m_NumBoxes, m_NumClasses, m_GridSizeX, m_GridSizeY, m_type, m_new_coords, m_scale_x_y, m_beta_nms, m_Anchors, m_Mask);
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);