87 lines
3.9 KiB
Plaintext
87 lines
3.9 KiB
Plaintext
/*
|
|
* Created by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
__global__ void gpuYoloLayer_nc(const float* input, int* num_detections, float* detection_boxes, float* detection_scores,
|
|
int* detection_classes, const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX,
|
|
const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float scaleXY, const float* anchors,
|
|
const int* mask)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
|
|
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
|
|
|
|
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
|
|
return;
|
|
|
|
const int numGridCells = gridSizeX * gridSizeY;
|
|
const int bbindex = y_id * gridSizeX + x_id;
|
|
|
|
const float objectness = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
|
|
|
|
if (objectness < scoreThreshold)
|
|
return;
|
|
|
|
int count = (int)atomicAdd(num_detections, 1);
|
|
|
|
const float alpha = scaleXY;
|
|
const float beta = -0.5 * (scaleXY - 1);
|
|
|
|
float x = (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta + x_id) * netWidth /
|
|
gridSizeX;
|
|
|
|
float y = (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta + y_id) * netHeight /
|
|
gridSizeY;
|
|
|
|
float w = __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2) * anchors[mask[z_id] * 2];
|
|
|
|
float h = __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2) * anchors[mask[z_id] * 2 + 1];
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numOutputClasses; ++i) {
|
|
float prob = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
|
if (prob > maxProb) {
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
|
|
detection_boxes[count * 4 + 0] = x - 0.5 * w;
|
|
detection_boxes[count * 4 + 1] = y - 0.5 * h;
|
|
detection_boxes[count * 4 + 2] = x + 0.5 * w;
|
|
detection_boxes[count * 4 + 3] = y + 0.5 * h;
|
|
detection_scores[count] = objectness * maxProb;
|
|
detection_classes[count] = maxIndex;
|
|
}
|
|
|
|
cudaError_t cudaYoloLayer_nc(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
|
|
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
|
|
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
|
|
const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
|
|
|
cudaError_t cudaYoloLayer_nc(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
|
|
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
|
|
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
|
|
const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream)
|
|
{
|
|
dim3 threads_per_block(16, 16, 4);
|
|
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1,
|
|
(numBBoxes / threads_per_block.z) + 1);
|
|
|
|
for (unsigned int batch = 0; batch < batchSize; ++batch) {
|
|
gpuYoloLayer_nc<<<number_of_blocks, threads_per_block, 0, stream>>>(
|
|
reinterpret_cast<const float*>(input) + (batch * inputSize), reinterpret_cast<int*>(num_detections) + (batch),
|
|
reinterpret_cast<float*>(detection_boxes) + (batch * 4 * outputSize),
|
|
reinterpret_cast<float*>(detection_scores) + (batch * outputSize),
|
|
reinterpret_cast<int*>(detection_classes) + (batch * outputSize), scoreThreshold, netWidth, netHeight, gridSizeX,
|
|
gridSizeY, numOutputClasses, numBBoxes, scaleXY, reinterpret_cast<const float*>(anchors),
|
|
reinterpret_cast<const int*>(mask));
|
|
}
|
|
return cudaGetLastError();
|
|
}
|