531 lines
20 KiB
Plaintext
531 lines
20 KiB
Plaintext
/*
|
|
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Edited by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <thrust/host_vector.h>
|
|
#include <thrust/device_vector.h>
|
|
|
|
#include "nvdsinfer_custom_impl.h"
|
|
|
|
#include "utils.h"
|
|
#include "yoloPlugins.h"
|
|
|
|
__global__ void decodeTensor_YOLO_ONNX(NvDsInferParseObjectInfo *binfo, const float* detections, const int numClasses,
|
|
const int outputSize, float netW, float netH, const float* preclusterThreshold, int* numDetections)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (x_id >= outputSize)
|
|
return;
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numClasses; ++i) {
|
|
float prob = detections[x_id * (5 + numClasses) + 5 + i];
|
|
if (prob > maxProb) {
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
|
|
const float objectness = detections[x_id * (5 + numClasses) + 4];
|
|
|
|
if (objectness * maxProb < preclusterThreshold[maxIndex])
|
|
return;
|
|
|
|
int count = (int)atomicAdd(numDetections, 1);
|
|
|
|
const float bxc = detections[x_id * (5 + numClasses) + 0];
|
|
const float byc = detections[x_id * (5 + numClasses) + 1];
|
|
const float bw = detections[x_id * (5 + numClasses) + 2];
|
|
const float bh = detections[x_id * (5 + numClasses) + 3];
|
|
|
|
float x0 = bxc - bw / 2;
|
|
float y0 = byc - bh / 2;
|
|
float x1 = x0 + bw;
|
|
float y1 = y0 + bh;
|
|
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
|
|
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
|
|
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
|
|
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
|
|
|
|
binfo[count].left = x0;
|
|
binfo[count].top = y0;
|
|
binfo[count].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
|
|
binfo[count].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
|
|
binfo[count].detectionConfidence = objectness * maxProb;
|
|
binfo[count].classId = maxIndex;
|
|
}
|
|
|
|
__global__ void decodeTensor_YOLOV8_ONNX(NvDsInferParseObjectInfo* binfo, const float* detections, const int numClasses,
|
|
const int outputSize, float netW, float netH, const float* preclusterThreshold, int* numDetections)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (x_id >= outputSize)
|
|
return;
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numClasses; ++i) {
|
|
float prob = detections[x_id + outputSize * (i + 4)];
|
|
if (prob > maxProb) {
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
|
|
if (maxProb < preclusterThreshold[maxIndex])
|
|
return;
|
|
|
|
int count = (int)atomicAdd(numDetections, 1);
|
|
|
|
const float bxc = detections[x_id + outputSize * 0];
|
|
const float byc = detections[x_id + outputSize * 1];
|
|
const float bw = detections[x_id + outputSize * 2];
|
|
const float bh = detections[x_id + outputSize * 3];
|
|
|
|
float x0 = bxc - bw / 2;
|
|
float y0 = byc - bh / 2;
|
|
float x1 = x0 + bw;
|
|
float y1 = y0 + bh;
|
|
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
|
|
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
|
|
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
|
|
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
|
|
|
|
binfo[count].left = x0;
|
|
binfo[count].top = y0;
|
|
binfo[count].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
|
|
binfo[count].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
|
|
binfo[count].detectionConfidence = maxProb;
|
|
binfo[count].classId = maxIndex;
|
|
}
|
|
|
|
__global__ void decodeTensor_YOLOX_ONNX(NvDsInferParseObjectInfo *binfo, const float* detections, const int numClasses,
|
|
const int outputSize, float netW, float netH, const int *grid0, const int *grid1, const int *strides,
|
|
const float* preclusterThreshold, int* numDetections)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (x_id >= outputSize)
|
|
return;
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numClasses; ++i) {
|
|
float prob = detections[x_id * (5 + numClasses) + 5 + i];
|
|
if (prob > maxProb) {
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
|
|
const float objectness = detections[x_id * (5 + numClasses) + 4];
|
|
|
|
if (objectness * maxProb < preclusterThreshold[maxIndex])
|
|
return;
|
|
|
|
int count = (int)atomicAdd(numDetections, 1);
|
|
|
|
const float bxc = (detections[x_id * (5 + numClasses) + 0] + grid0[x_id]) * strides[x_id];
|
|
const float byc = (detections[x_id * (5 + numClasses) + 1] + grid1[x_id]) * strides[x_id];
|
|
const float bw = __expf(detections[x_id * (5 + numClasses) + 2]) * strides[x_id];
|
|
const float bh = __expf(detections[x_id * (5 + numClasses) + 3]) * strides[x_id];
|
|
|
|
float x0 = bxc - bw / 2;
|
|
float y0 = byc - bh / 2;
|
|
float x1 = x0 + bw;
|
|
float y1 = y0 + bh;
|
|
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
|
|
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
|
|
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
|
|
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
|
|
|
|
binfo[count].left = x0;
|
|
binfo[count].top = y0;
|
|
binfo[count].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
|
|
binfo[count].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
|
|
binfo[count].detectionConfidence = objectness * maxProb;
|
|
binfo[count].classId = maxIndex;
|
|
}
|
|
|
|
__global__ void decodeTensor_YOLO_NAS_ONNX(NvDsInferParseObjectInfo *binfo, const float* scores, const float* boxes,
|
|
const int numClasses, const int outputSize, float netW, float netH, const float* preclusterThreshold, int* numDetections)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (x_id >= outputSize)
|
|
return;
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numClasses; ++i) {
|
|
float prob = scores[x_id * numClasses + i];
|
|
if (prob > maxProb) {
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
|
|
if (maxProb < preclusterThreshold[maxIndex])
|
|
return;
|
|
|
|
int count = (int)atomicAdd(numDetections, 1);
|
|
|
|
float x0 = boxes[x_id * 4 + 0];
|
|
float y0 = boxes[x_id * 4 + 1];
|
|
float x1 = boxes[x_id * 4 + 2];
|
|
float y1 = boxes[x_id * 4 + 3];
|
|
|
|
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
|
|
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
|
|
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
|
|
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
|
|
|
|
binfo[count].left = x0;
|
|
binfo[count].top = y0;
|
|
binfo[count].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
|
|
binfo[count].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
|
|
binfo[count].detectionConfidence = maxProb;
|
|
binfo[count].classId = maxIndex;
|
|
}
|
|
|
|
__global__ void decodeTensor_PPYOLOE_ONNX(NvDsInferParseObjectInfo *binfo, const float* scores, const float* boxes,
|
|
const int numClasses, const int outputSize, float netW, float netH, const float* preclusterThreshold, int* numDetections)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (x_id >= outputSize)
|
|
return;
|
|
|
|
float maxProb = 0.0f;
|
|
int maxIndex = -1;
|
|
|
|
for (uint i = 0; i < numClasses; ++i) {
|
|
float prob = scores[x_id + outputSize * i];
|
|
if (prob > maxProb) {
|
|
maxProb = prob;
|
|
maxIndex = i;
|
|
}
|
|
}
|
|
|
|
if (maxProb < preclusterThreshold[maxIndex])
|
|
return;
|
|
|
|
int count = (int)atomicAdd(numDetections, 1);
|
|
|
|
float x0 = boxes[x_id * 4 + 0];
|
|
float y0 = boxes[x_id * 4 + 1];
|
|
float x1 = boxes[x_id * 4 + 2];
|
|
float y1 = boxes[x_id * 4 + 3];
|
|
|
|
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
|
|
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
|
|
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
|
|
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
|
|
|
|
binfo[count].left = x0;
|
|
binfo[count].top = y0;
|
|
binfo[count].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
|
|
binfo[count].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
|
|
binfo[count].detectionConfidence = maxProb;
|
|
binfo[count].classId = maxIndex;
|
|
}
|
|
|
|
static bool
|
|
NvDsInferParseCustom_YOLO_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const NvDsInferLayerInfo& layer = outputLayersInfo[0];
|
|
|
|
const uint outputSize = layer.inferDims.d[0];
|
|
const uint numClasses = layer.inferDims.d[1] - 5;
|
|
|
|
if (numClasses != detectionParams.numClassesConfigured) {
|
|
std::cerr << "WARNING: Number of classes mismatch, make sure to set num-detected-classes=" << numClasses
|
|
<< " in config_infer file\n" << std::endl;
|
|
}
|
|
|
|
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
|
|
|
|
std::vector<int> numDetections = { 0 };
|
|
thrust::device_vector<int> d_numDetections(numDetections);
|
|
|
|
thrust::device_vector<float> preclusterThreshold(detectionParams.perClassPreclusterThreshold);
|
|
|
|
int threads_per_block = 1024;
|
|
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
|
|
|
|
decodeTensor_YOLO_ONNX<<<threads_per_block, number_of_blocks>>>(
|
|
thrust::raw_pointer_cast(objects.data()), (const float*) (layer.buffer), numClasses, outputSize,
|
|
static_cast<float>(networkInfo.width), static_cast<float>(networkInfo.height),
|
|
thrust::raw_pointer_cast(preclusterThreshold.data()), thrust::raw_pointer_cast(d_numDetections.data()));
|
|
|
|
thrust::copy(d_numDetections.begin(), d_numDetections.end(), numDetections.begin());
|
|
objectList.resize(numDetections[0]);
|
|
thrust::copy(objects.begin(), objects.begin() + numDetections[0], objectList.begin());
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
NvDsInferParseCustom_YOLOV8_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const NvDsInferLayerInfo& layer = outputLayersInfo[0];
|
|
|
|
const uint numClasses = layer.inferDims.d[0] - 4;
|
|
const uint outputSize = layer.inferDims.d[1];
|
|
|
|
if (numClasses != detectionParams.numClassesConfigured) {
|
|
std::cerr << "WARNING: Number of classes mismatch, make sure to set num-detected-classes=" << numClasses
|
|
<< " in config_infer file\n" << std::endl;
|
|
}
|
|
|
|
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
|
|
|
|
std::vector<int> numDetections = { 0 };
|
|
thrust::device_vector<int> d_numDetections(numDetections);
|
|
|
|
thrust::device_vector<float> preclusterThreshold(detectionParams.perClassPreclusterThreshold);
|
|
|
|
int threads_per_block = 1024;
|
|
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
|
|
|
|
decodeTensor_YOLOV8_ONNX<<<threads_per_block, number_of_blocks>>>(
|
|
thrust::raw_pointer_cast(objects.data()), (const float*) (layer.buffer), numClasses, outputSize,
|
|
static_cast<float>(networkInfo.width), static_cast<float>(networkInfo.height),
|
|
thrust::raw_pointer_cast(preclusterThreshold.data()), thrust::raw_pointer_cast(d_numDetections.data()));
|
|
|
|
thrust::copy(d_numDetections.begin(), d_numDetections.end(), numDetections.begin());
|
|
objectList.resize(numDetections[0]);
|
|
thrust::copy(objects.begin(), objects.begin() + numDetections[0], objectList.begin());
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
NvDsInferParseCustom_YOLOX_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const NvDsInferLayerInfo& layer = outputLayersInfo[0];
|
|
|
|
const uint outputSize = layer.inferDims.d[0];
|
|
const uint numClasses = layer.inferDims.d[1] - 5;
|
|
|
|
if (numClasses != detectionParams.numClassesConfigured) {
|
|
std::cerr << "WARNING: Number of classes mismatch, make sure to set num-detected-classes=" << numClasses
|
|
<< " in config_infer file\n" << std::endl;
|
|
}
|
|
|
|
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
|
|
|
|
std::vector<int> numDetections = { 0 };
|
|
thrust::device_vector<int> d_numDetections(numDetections);
|
|
|
|
thrust::device_vector<float> preclusterThreshold(detectionParams.perClassPreclusterThreshold);
|
|
|
|
std::vector<int> strides = {8, 16, 32};
|
|
|
|
std::vector<int> grid0;
|
|
std::vector<int> grid1;
|
|
std::vector<int> gridStrides;
|
|
|
|
for (uint s = 0; s < strides.size(); ++s) {
|
|
int num_grid_y = networkInfo.height / strides[s];
|
|
int num_grid_x = networkInfo.width / strides[s];
|
|
for (int g1 = 0; g1 < num_grid_y; ++g1) {
|
|
for (int g0 = 0; g0 < num_grid_x; ++g0) {
|
|
grid0.push_back(g0);
|
|
grid1.push_back(g1);
|
|
gridStrides.push_back(strides[s]);
|
|
}
|
|
}
|
|
}
|
|
|
|
thrust::device_vector<int> d_grid0(grid0);
|
|
thrust::device_vector<int> d_grid1(grid1);
|
|
thrust::device_vector<int> d_gridStrides(gridStrides);
|
|
|
|
int threads_per_block = 1024;
|
|
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
|
|
|
|
decodeTensor_YOLOX_ONNX<<<threads_per_block, number_of_blocks>>>(
|
|
thrust::raw_pointer_cast(objects.data()), (const float*) (layer.buffer), numClasses, outputSize,
|
|
static_cast<float>(networkInfo.width), static_cast<float>(networkInfo.height),
|
|
thrust::raw_pointer_cast(d_grid0.data()), thrust::raw_pointer_cast(d_grid1.data()),
|
|
thrust::raw_pointer_cast(d_gridStrides.data()), thrust::raw_pointer_cast(preclusterThreshold.data()),
|
|
thrust::raw_pointer_cast(d_numDetections.data()));
|
|
|
|
thrust::copy(d_numDetections.begin(), d_numDetections.end(), numDetections.begin());
|
|
objectList.resize(numDetections[0]);
|
|
thrust::copy(objects.begin(), objects.begin() + numDetections[0], objectList.begin());
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
NvDsInferParseCustom_YOLO_NAS_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const NvDsInferLayerInfo& scores = outputLayersInfo[0];
|
|
const NvDsInferLayerInfo& boxes = outputLayersInfo[1];
|
|
|
|
const uint outputSize = scores.inferDims.d[0];
|
|
const uint numClasses = scores.inferDims.d[1];
|
|
|
|
if (numClasses != detectionParams.numClassesConfigured) {
|
|
std::cerr << "WARNING: Number of classes mismatch, make sure to set num-detected-classes=" << numClasses
|
|
<< " in config_infer file\n" << std::endl;
|
|
}
|
|
|
|
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
|
|
|
|
std::vector<int> numDetections = { 0 };
|
|
thrust::device_vector<int> d_numDetections(numDetections);
|
|
|
|
thrust::device_vector<float> preclusterThreshold(detectionParams.perClassPreclusterThreshold);
|
|
|
|
int threads_per_block = 1024;
|
|
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
|
|
|
|
decodeTensor_YOLO_NAS_ONNX<<<threads_per_block, number_of_blocks>>>(
|
|
thrust::raw_pointer_cast(objects.data()), (const float*) (scores.buffer), (const float*) (boxes.buffer), numClasses,
|
|
outputSize, static_cast<float>(networkInfo.width), static_cast<float>(networkInfo.height),
|
|
thrust::raw_pointer_cast(preclusterThreshold.data()), thrust::raw_pointer_cast(d_numDetections.data()));
|
|
|
|
thrust::copy(d_numDetections.begin(), d_numDetections.end(), numDetections.begin());
|
|
objectList.resize(numDetections[0]);
|
|
thrust::copy(objects.begin(), objects.begin() + numDetections[0], objectList.begin());
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
NvDsInferParseCustom_PPYOLOE_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
if (outputLayersInfo.empty()) {
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
const NvDsInferLayerInfo& scores = outputLayersInfo[0];
|
|
const NvDsInferLayerInfo& boxes = outputLayersInfo[1];
|
|
|
|
const uint numClasses = scores.inferDims.d[0];
|
|
const uint outputSize = scores.inferDims.d[1];
|
|
|
|
if (numClasses != detectionParams.numClassesConfigured) {
|
|
std::cerr << "WARNING: Number of classes mismatch, make sure to set num-detected-classes=" << numClasses
|
|
<< " in config_infer file\n" << std::endl;
|
|
}
|
|
|
|
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
|
|
|
|
std::vector<int> numDetections = { 0 };
|
|
thrust::device_vector<int> d_numDetections(numDetections);
|
|
|
|
thrust::device_vector<float> preclusterThreshold(detectionParams.perClassPreclusterThreshold);
|
|
|
|
int threads_per_block = 1024;
|
|
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
|
|
|
|
decodeTensor_PPYOLOE_ONNX<<<threads_per_block, number_of_blocks>>>(
|
|
thrust::raw_pointer_cast(objects.data()), (const float*) (scores.buffer), (const float*) (boxes.buffer), numClasses,
|
|
outputSize, static_cast<float>(networkInfo.width), static_cast<float>(networkInfo.height),
|
|
thrust::raw_pointer_cast(preclusterThreshold.data()), thrust::raw_pointer_cast(d_numDetections.data()));
|
|
|
|
thrust::copy(d_numDetections.begin(), d_numDetections.end(), numDetections.begin());
|
|
objectList.resize(numDetections[0]);
|
|
thrust::copy(objects.begin(), objects.begin() + numDetections[0], objectList.begin());
|
|
|
|
return true;
|
|
}
|
|
|
|
extern "C" bool
|
|
NvDsInferParse_YOLO_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
return NvDsInferParseCustom_YOLO_ONNX(outputLayersInfo, networkInfo, detectionParams, objectList);
|
|
}
|
|
|
|
extern "C" bool
|
|
NvDsInferParse_YOLOV8_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
return NvDsInferParseCustom_YOLOV8_ONNX(outputLayersInfo, networkInfo, detectionParams, objectList);
|
|
}
|
|
|
|
extern "C" bool
|
|
NvDsInferParse_YOLOX_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
return NvDsInferParseCustom_YOLOX_ONNX(outputLayersInfo, networkInfo, detectionParams, objectList);
|
|
}
|
|
|
|
extern "C" bool
|
|
NvDsInferParse_YOLO_NAS_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
return NvDsInferParseCustom_YOLO_NAS_ONNX(outputLayersInfo, networkInfo, detectionParams, objectList);
|
|
}
|
|
|
|
extern "C" bool
|
|
NvDsInferParse_PPYOLOE_ONNX(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
return NvDsInferParseCustom_PPYOLOE_ONNX(outputLayersInfo, networkInfo, detectionParams, objectList);
|
|
}
|