Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yolo.h
2023-06-05 14:48:23 -03:00

132 lines
4.0 KiB
C++

/*
* Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef _YOLO_H_
#define _YOLO_H_
#include "NvInferPlugin.h"
#include "nvdsinfer_custom_impl.h"
#include "layers/convolutional_layer.h"
#include "layers/deconvolutional_layer.h"
#include "layers/batchnorm_layer.h"
#include "layers/implicit_layer.h"
#include "layers/channels_layer.h"
#include "layers/shortcut_layer.h"
#include "layers/sam_layer.h"
#include "layers/route_layer.h"
#include "layers/upsample_layer.h"
#include "layers/pooling_layer.h"
#include "layers/reorg_layer.h"
struct NetworkInfo
{
std::string inputBlobName;
std::string networkType;
std::string modelName;
std::string onnxWtsFilePath;
std::string darknetWtsFilePath;
std::string darknetCfgFilePath;
uint batchSize;
int implicitBatch;
std::string int8CalibPath;
std::string deviceType;
uint numDetectedClasses;
int clusterMode;
std::string networkMode;
float scaleFactor;
const float* offsets;
};
struct TensorInfo
{
std::string blobName;
uint gridSizeX {0};
uint gridSizeY {0};
uint numBBoxes {0};
float scaleXY;
std::vector<float> anchors;
std::vector<int> mask;
};
class Yolo : public IModelParser {
public:
Yolo(const NetworkInfo& networkInfo);
~Yolo() override;
bool hasFullDimsSupported() const override { return false; }
const char* getModelName() const override {
return m_NetworkType == "onnx" ? m_OnnxWtsFilePath.substr(0, m_OnnxWtsFilePath.find(".onnx")).c_str() :
m_DarknetCfgFilePath.substr(0, m_DarknetCfgFilePath.find(".cfg")).c_str();
}
NvDsInferStatus parseModel(nvinfer1::INetworkDefinition& network) override;
nvinfer1::ICudaEngine* createEngine(nvinfer1::IBuilder* builder, nvinfer1::IBuilderConfig* config);
protected:
const std::string m_InputBlobName;
const std::string m_NetworkType;
const std::string m_ModelName;
const std::string m_OnnxWtsFilePath;
const std::string m_DarknetWtsFilePath;
const std::string m_DarknetCfgFilePath;
const uint m_BatchSize;
const int m_ImplicitBatch;
const std::string m_Int8CalibPath;
const std::string m_DeviceType;
const uint m_NumDetectedClasses;
const int m_ClusterMode;
const std::string m_NetworkMode;
const float m_ScaleFactor;
const float* m_Offsets;
uint m_InputC;
uint m_InputH;
uint m_InputW;
uint64_t m_InputSize;
uint m_NumClasses;
uint m_LetterBox;
uint m_NewCoords;
uint m_YoloCount;
std::vector<TensorInfo> m_YoloTensors;
std::vector<std::map<std::string, std::string>> m_ConfigBlocks;
std::vector<nvinfer1::Weights> m_TrtWeights;
private:
NvDsInferStatus buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition& network);
std::vector<std::map<std::string, std::string>> parseConfigFile(const std::string cfgFilePath);
void parseConfigBlocks();
void destroyNetworkUtils();
};
#endif // _YOLO_H_