153 lines
4.6 KiB
C++
153 lines
4.6 KiB
C++
/*
|
|
* Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Edited by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#ifndef _YOLO_H_
|
|
#define _YOLO_H_
|
|
|
|
#include "NvInferPlugin.h"
|
|
#include "nvdsinfer_custom_impl.h"
|
|
|
|
#include "layers/convolutional_layer.h"
|
|
#include "layers/deconvolutional_layer.h"
|
|
#include "layers/batchnorm_layer.h"
|
|
#include "layers/implicit_layer.h"
|
|
#include "layers/channels_layer.h"
|
|
#include "layers/shortcut_layer.h"
|
|
#include "layers/sam_layer.h"
|
|
#include "layers/route_layer.h"
|
|
#include "layers/upsample_layer.h"
|
|
#include "layers/pooling_layer.h"
|
|
#include "layers/reorg_layer.h"
|
|
|
|
#if NV_TENSORRT_MAJOR >= 8
|
|
#define INT int32_t
|
|
#else
|
|
#define INT int
|
|
#endif
|
|
|
|
#if NV_TENSORRT_MAJOR < 8 || (NV_TENSORRT_MAJOR == 8 && NV_TENSORRT_MINOR == 0)
|
|
static class Logger : public nvinfer1::ILogger {
|
|
void log(nvinfer1::ILogger::Severity severity, const char* msg) noexcept override {
|
|
if (severity <= nvinfer1::ILogger::Severity::kWARNING)
|
|
std::cout << msg << std::endl;
|
|
}
|
|
} logger;
|
|
#endif
|
|
|
|
struct NetworkInfo
|
|
{
|
|
std::string inputBlobName;
|
|
std::string networkType;
|
|
std::string modelName;
|
|
std::string onnxWtsFilePath;
|
|
std::string darknetWtsFilePath;
|
|
std::string darknetCfgFilePath;
|
|
uint batchSize;
|
|
int implicitBatch;
|
|
std::string int8CalibPath;
|
|
std::string deviceType;
|
|
uint numDetectedClasses;
|
|
int clusterMode;
|
|
std::string networkMode;
|
|
float scaleFactor;
|
|
const float* offsets;
|
|
uint workspaceSize;
|
|
};
|
|
|
|
struct TensorInfo
|
|
{
|
|
std::string blobName;
|
|
uint gridSizeX {0};
|
|
uint gridSizeY {0};
|
|
uint numBBoxes {0};
|
|
float scaleXY;
|
|
std::vector<float> anchors;
|
|
std::vector<int> mask;
|
|
};
|
|
|
|
class Yolo : public IModelParser {
|
|
public:
|
|
Yolo(const NetworkInfo& networkInfo);
|
|
|
|
~Yolo() override;
|
|
|
|
bool hasFullDimsSupported() const override { return false; }
|
|
|
|
const char* getModelName() const override {
|
|
return m_NetworkType == "onnx" ? m_OnnxWtsFilePath.substr(0, m_OnnxWtsFilePath.find(".onnx")).c_str() :
|
|
m_DarknetCfgFilePath.substr(0, m_DarknetCfgFilePath.find(".cfg")).c_str();
|
|
}
|
|
|
|
NvDsInferStatus parseModel(nvinfer1::INetworkDefinition& network) override;
|
|
|
|
#if NV_TENSORRT_MAJOR >= 8
|
|
nvinfer1::ICudaEngine* createEngine(nvinfer1::IBuilder* builder, nvinfer1::IBuilderConfig* config);
|
|
#else
|
|
nvinfer1::ICudaEngine* createEngine(nvinfer1::IBuilder* builder);
|
|
#endif
|
|
|
|
protected:
|
|
const std::string m_InputBlobName;
|
|
const std::string m_NetworkType;
|
|
const std::string m_ModelName;
|
|
const std::string m_OnnxWtsFilePath;
|
|
const std::string m_DarknetWtsFilePath;
|
|
const std::string m_DarknetCfgFilePath;
|
|
const uint m_BatchSize;
|
|
const int m_ImplicitBatch;
|
|
const std::string m_Int8CalibPath;
|
|
const std::string m_DeviceType;
|
|
const uint m_NumDetectedClasses;
|
|
const int m_ClusterMode;
|
|
const std::string m_NetworkMode;
|
|
const float m_ScaleFactor;
|
|
const float* m_Offsets;
|
|
const uint m_WorkspaceSize;
|
|
|
|
uint m_InputC;
|
|
uint m_InputH;
|
|
uint m_InputW;
|
|
uint64_t m_InputSize;
|
|
uint m_NumClasses;
|
|
uint m_LetterBox;
|
|
uint m_NewCoords;
|
|
uint m_YoloCount;
|
|
|
|
std::vector<TensorInfo> m_YoloTensors;
|
|
std::vector<std::map<std::string, std::string>> m_ConfigBlocks;
|
|
std::vector<nvinfer1::Weights> m_TrtWeights;
|
|
|
|
private:
|
|
NvDsInferStatus buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition& network);
|
|
|
|
std::vector<std::map<std::string, std::string>> parseConfigFile(const std::string cfgFilePath);
|
|
|
|
void parseConfigBlocks();
|
|
|
|
void destroyNetworkUtils();
|
|
};
|
|
|
|
#endif // _YOLO_H_
|