75 lines
3.2 KiB
Plaintext
75 lines
3.2 KiB
Plaintext
/*
|
|
* Created by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
|
|
|
|
__global__ void gpuYoloLayer_nc(const float* input, float* output, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses,
|
|
const uint numBBoxes, const float scale_x_y)
|
|
{
|
|
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
|
|
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
|
|
|
|
if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes))
|
|
{
|
|
return;
|
|
}
|
|
|
|
const int numGridCells = gridSizeX * gridSizeY;
|
|
const int bbindex = y_id * gridSizeX + x_id;
|
|
|
|
const float alpha = scale_x_y;
|
|
const float beta = -0.5 * (scale_x_y - 1);
|
|
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
|
|
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta;
|
|
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
|
|
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta;
|
|
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
|
|
= pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2);
|
|
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
|
|
= pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2);
|
|
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
|
|
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
|
|
|
|
for (uint i = 0; i < numOutputClasses; ++i)
|
|
{
|
|
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]
|
|
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
|
}
|
|
}
|
|
|
|
cudaError_t cudaYoloLayer_nc(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
|
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream,
|
|
const float modelScale);
|
|
|
|
cudaError_t cudaYoloLayer_nc(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
|
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream,
|
|
const float modelScale)
|
|
{
|
|
dim3 threads_per_block(16, 16, 4);
|
|
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
|
|
(gridSizeY / threads_per_block.y) + 1,
|
|
(numBBoxes / threads_per_block.z) + 1);
|
|
for (unsigned int batch = 0; batch < batchSize; ++batch)
|
|
{
|
|
gpuYoloLayer_nc<<<number_of_blocks, threads_per_block, 0, stream>>>(
|
|
reinterpret_cast<const float*>(input) + (batch * outputSize),
|
|
reinterpret_cast<float*>(output) + (batch * outputSize), gridSizeX, gridSizeY, numOutputClasses,
|
|
numBBoxes, modelScale);
|
|
}
|
|
return cudaGetLastError();
|
|
}
|