169 lines
5.9 KiB
C++
169 lines
5.9 KiB
C++
/*
|
|
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Edited by Marcos Luciano
|
|
* https://www.github.com/marcoslucianops
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
#include "nvdsinfer_custom_impl.h"
|
|
#include "utils.h"
|
|
|
|
#include "yoloPlugins.h"
|
|
|
|
extern "C" bool NvDsInferParseYolo(
|
|
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList);
|
|
|
|
static NvDsInferParseObjectInfo convertBBox(
|
|
const float& bx, const float& by, const float& bw,
|
|
const float& bh, const uint& netW, const uint& netH)
|
|
{
|
|
NvDsInferParseObjectInfo b;
|
|
|
|
float x1 = bx - bw / 2;
|
|
float y1 = by - bh / 2;
|
|
float x2 = x1 + bw;
|
|
float y2 = y1 + bh;
|
|
|
|
x1 = clamp(x1, 0, netW);
|
|
y1 = clamp(y1, 0, netH);
|
|
x2 = clamp(x2, 0, netW);
|
|
y2 = clamp(y2, 0, netH);
|
|
|
|
b.left = x1;
|
|
b.width = clamp(x2 - x1, 0, netW);
|
|
b.top = y1;
|
|
b.height = clamp(y2 - y1, 0, netH);
|
|
|
|
return b;
|
|
}
|
|
|
|
static void addBBoxProposal(
|
|
const float bx, const float by, const float bw, const float bh,
|
|
const uint& netW, const uint& netH, const int maxIndex,
|
|
const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
|
|
{
|
|
NvDsInferParseObjectInfo bbi = convertBBox(bx, by, bw, bh, netW, netH);
|
|
if (bbi.width < 1 || bbi.height < 1) return;
|
|
|
|
bbi.detectionConfidence = maxProb;
|
|
bbi.classId = maxIndex;
|
|
binfo.push_back(bbi);
|
|
}
|
|
|
|
static std::vector<NvDsInferParseObjectInfo> decodeYoloTensor(
|
|
const float* detections,
|
|
const uint gridSizeW, const uint gridSizeH, const uint numBBoxes,
|
|
const uint numOutputClasses, const uint& netW, const uint& netH)
|
|
{
|
|
std::vector<NvDsInferParseObjectInfo> binfo;
|
|
for (uint y = 0; y < gridSizeH; ++y) {
|
|
for (uint x = 0; x < gridSizeW; ++x) {
|
|
for (uint b = 0; b < numBBoxes; ++b)
|
|
{
|
|
const int numGridCells = gridSizeH * gridSizeW;
|
|
const int bbindex = y * gridSizeW + x;
|
|
|
|
const float bx
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 0)];
|
|
const float by
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 1)];
|
|
const float bw
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 2)];
|
|
const float bh
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 3)];
|
|
const float maxProb
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 4)];
|
|
const int maxIndex
|
|
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 5)];
|
|
|
|
addBBoxProposal(bx, by, bw, bh, netW, netH, maxIndex, maxProb, binfo);
|
|
}
|
|
}
|
|
}
|
|
return binfo;
|
|
}
|
|
|
|
static bool NvDsInferParseCustomYolo(
|
|
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList,
|
|
const uint &numBBoxes,
|
|
const uint &numClasses)
|
|
{
|
|
if (outputLayersInfo.empty())
|
|
{
|
|
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (numClasses != detectionParams.numClassesConfigured)
|
|
{
|
|
std::cerr << "WARNING: Num classes mismatch. Configured: "
|
|
<< detectionParams.numClassesConfigured
|
|
<< ", detected by network: " << numClasses << std::endl;
|
|
}
|
|
|
|
std::vector<NvDsInferParseObjectInfo> objects;
|
|
|
|
for (uint idx = 0; idx < outputLayersInfo.size(); ++idx)
|
|
{
|
|
const NvDsInferLayerInfo &layer = outputLayersInfo[idx];
|
|
|
|
assert(layer.inferDims.numDims == 3);
|
|
const uint gridSizeH = layer.inferDims.d[1];
|
|
const uint gridSizeW = layer.inferDims.d[2];
|
|
|
|
std::vector<NvDsInferParseObjectInfo> outObjs =
|
|
decodeYoloTensor(
|
|
(const float*)(layer.buffer),
|
|
gridSizeW, gridSizeH, numBBoxes, numClasses,
|
|
networkInfo.width, networkInfo.height);
|
|
|
|
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
|
|
}
|
|
|
|
objectList = objects;
|
|
|
|
return true;
|
|
}
|
|
|
|
extern "C" bool NvDsInferParseYolo(
|
|
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
|
|
NvDsInferNetworkInfo const& networkInfo,
|
|
NvDsInferParseDetectionParams const& detectionParams,
|
|
std::vector<NvDsInferParseObjectInfo>& objectList)
|
|
{
|
|
uint numBBoxes = kNUM_BBOXES;
|
|
uint numClasses = kNUM_CLASSES;
|
|
|
|
return NvDsInferParseCustomYolo (
|
|
outputLayersInfo, networkInfo, detectionParams, objectList, numBBoxes, numClasses);
|
|
}
|
|
|
|
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo);
|