Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yoloForward.cu
2024-11-07 11:25:17 -03:00

84 lines
3.6 KiB
Plaintext

/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include <stdint.h>
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
__global__ void gpuYoloLayer(const float* input, float* output, const uint netWidth, const uint netHeight,
const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes,
const uint64_t lastInputSize, const float scaleXY, const float* anchors, const int* mask)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes) {
return;
}
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
const float alpha = scaleXY;
const float beta = -0.5 * (scaleXY - 1);
float xc = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) * alpha + beta + x_id)
* netWidth / gridSizeX;
float yc = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) * alpha + beta + y_id)
* netHeight / gridSizeY;
float w = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]) * anchors[mask[z_id] * 2];
float h = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]) * anchors[mask[z_id] * 2 + 1];
const float objectness = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
float maxProb = 0.0f;
int maxIndex = -1;
for (uint i = 0; i < numOutputClasses; ++i) {
float prob = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]);
if (prob > maxProb) {
maxProb = prob;
maxIndex = i;
}
}
int count = numGridCells * z_id + bbindex + lastInputSize;
output[count * 6 + 0] = xc - w * 0.5;
output[count * 6 + 1] = yc - h * 0.5;
output[count * 6 + 2] = xc + w * 0.5;
output[count * 6 + 3] = yc + h * 0.5;
output[count * 6 + 4] = maxProb * objectness;
output[count * 6 + 5] = (float) maxIndex;
}
cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint64_t& inputSize,
const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint64_t& inputSize,
const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream)
{
dim3 threads_per_block(16, 16, 4);
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1,
(numBBoxes / threads_per_block.z) + 1);
for (unsigned int batch = 0; batch < batchSize; ++batch) {
gpuYoloLayer<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*> (input) + (batch * inputSize),
reinterpret_cast<float*> (output) + (batch * 6 * outputSize),
netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, lastInputSize, scaleXY,
reinterpret_cast<const float*> (anchors), reinterpret_cast<const int*> (mask));
}
return cudaGetLastError();
}