Files
deepstream_yolo/utils/export_yoloV8.py
Anvar Nazar a9d2f13544 fix import
2023-09-26 17:04:52 +05:30

123 lines
3.8 KiB
Python

import os
import sys
import argparse
import warnings
import onnx
import torch
import torch.nn as nn
from copy import deepcopy
from ultralytics import YOLO
from ultralytics.utils.torch_utils import select_device
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x = x.transpose(1, 2)
boxes = x[:, :, :4]
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
classes = classes.float()
return boxes, scores, classes
def suppress_warnings():
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
def yolov8_export(weights, device):
model = YOLO(weights)
model = deepcopy(model.model).to(device)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.float()
model = model.fuse()
for k, m in model.named_modules():
if isinstance(m, (Detect, RTDETRDecoder)):
m.dynamic = False
m.export = True
m.format = 'onnx'
elif isinstance(m, C2f):
m.forward = m.forward_split
return model
def main(args):
suppress_warnings()
print('\nStarting: %s' % args.weights)
print('Opening YOLOv8 model\n')
device = select_device('cpu')
model = yolov8_export(args.weights, device)
if len(model.names.keys()) > 0:
print('\nCreating labels.txt file')
f = open('labels.txt', 'w')
for name in model.names.values():
f.write(name + '\n')
f.close()
model = nn.Sequential(model, DeepStreamOutput())
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
print('Simplifying the ONNX model')
import onnxsim
model_onnx = onnx.load(onnx_output_file)
model_onnx, _ = onnxsim.simplify(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print('Done: %s\n' % onnx_output_file)
def parse_args():
parser = argparse.ArgumentParser(description='DeepStream YOLOv8 conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args))