Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/layers/batchnorm_layer.cpp
2023-01-27 15:56:00 -03:00

97 lines
2.9 KiB
C++

/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "batchnorm_layer.h"
#include <cassert>
#include <math.h>
nvinfer1::ITensor*
batchnormLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, float eps, nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "batchnorm");
assert(block.find("filters") != block.end());
int filters = std::stoi(block.at("filters"));
std::string activation = block.at("activation");
std::vector<float> bnBiases;
std::vector<float> bnWeights;
std::vector<float> bnRunningMean;
std::vector<float> bnRunningVar;
if (weightsType == "weights") {
for (int i = 0; i < filters; ++i) {
bnBiases.push_back(weights[weightPtr]);
++weightPtr;
}
for (int i = 0; i < filters; ++i) {
bnWeights.push_back(weights[weightPtr]);
++weightPtr;
}
for (int i = 0; i < filters; ++i) {
bnRunningMean.push_back(weights[weightPtr]);
++weightPtr;
}
for (int i = 0; i < filters; ++i) {
bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-5));
++weightPtr;
}
}
else {
for (int i = 0; i < filters; ++i) {
bnWeights.push_back(weights[weightPtr]);
++weightPtr;
}
for (int i = 0; i < filters; ++i) {
bnBiases.push_back(weights[weightPtr]);
++weightPtr;
}
for (int i = 0; i < filters; ++i) {
bnRunningMean.push_back(weights[weightPtr]);
++weightPtr;
}
for (int i = 0; i < filters; ++i) {
bnRunningVar.push_back(sqrt(weights[weightPtr] + eps));
++weightPtr;
}
}
int size = filters;
nvinfer1::Weights shift {nvinfer1::DataType::kFLOAT, nullptr, size};
nvinfer1::Weights scale {nvinfer1::DataType::kFLOAT, nullptr, size};
nvinfer1::Weights power {nvinfer1::DataType::kFLOAT, nullptr, size};
float* shiftWt = new float[size];
for (int i = 0; i < size; ++i)
shiftWt[i] = bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
shift.values = shiftWt;
float* scaleWt = new float[size];
for (int i = 0; i < size; ++i)
scaleWt[i] = bnWeights.at(i) / bnRunningVar[i];
scale.values = scaleWt;
float* powerWt = new float[size];
for (int i = 0; i < size; ++i)
powerWt[i] = 1.0;
power.values = powerWt;
trtWeights.push_back(shift);
trtWeights.push_back(scale);
trtWeights.push_back(power);
nvinfer1::IScaleLayer* batchnorm = network->addScale(*input, nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(batchnorm != nullptr);
std::string batchnormLayerName = "batchnorm_" + std::to_string(layerIdx);
batchnorm->setName(batchnormLayerName.c_str());
output = batchnorm->getOutput(0);
output = activationLayer(layerIdx, activation, output, network);
assert(output != nullptr);
return output;
}