Files
2024-11-07 11:25:17 -03:00

273 lines
9.6 KiB
C++

/*
* Copyright (c) 2018-2024, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "yoloPlugins.h"
namespace {
template <typename T>
void write(char*& buffer, const T& val) {
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template <typename T>
void read(const char*& buffer, T& val) {
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
}
cudaError_t cudaYoloLayer_nc(const void* input, void* output, const uint& batchSize, const uint64_t& inputSize,
const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint64_t& inputSize,
const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* output, const uint& batchSize,
const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const void* anchors, cudaStream_t stream);
YoloLayer::YoloLayer(const void* data, size_t length) {
const char* d = static_cast<const char*>(data);
read(d, m_NetWidth);
read(d, m_NetHeight);
read(d, m_NumClasses);
read(d, m_NewCoords);
read(d, m_OutputSize);
uint yoloTensorsSize;
read(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i) {
TensorInfo curYoloTensor;
read(d, curYoloTensor.gridSizeX);
read(d, curYoloTensor.gridSizeY);
read(d, curYoloTensor.numBBoxes);
read(d, curYoloTensor.scaleXY);
uint anchorsSize;
read(d, anchorsSize);
for (uint j = 0; j < anchorsSize; ++j) {
float result;
read(d, result);
curYoloTensor.anchors.push_back(result);
}
uint maskSize;
read(d, maskSize);
for (uint j = 0; j < maskSize; ++j) {
int result;
read(d, result);
curYoloTensor.mask.push_back(result);
}
m_YoloTensors.push_back(curYoloTensor);
}
};
YoloLayer::YoloLayer(const uint& netWidth, const uint& netHeight, const uint& numClasses, const uint& newCoords,
const std::vector<TensorInfo>& yoloTensors, const uint64_t& outputSize) : m_NetWidth(netWidth),
m_NetHeight(netHeight), m_NumClasses(numClasses), m_NewCoords(newCoords), m_YoloTensors(yoloTensors),
m_OutputSize(outputSize)
{
assert(m_NetWidth > 0);
assert(m_NetHeight > 0);
assert(m_NumClasses > 0);
assert(m_OutputSize > 0);
};
nvinfer1::IPluginV2DynamicExt*
YoloLayer::clone() const noexcept
{
return new YoloLayer(m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize);
}
size_t
YoloLayer::getSerializationSize() const noexcept
{
size_t totalSize = 0;
totalSize += sizeof(m_NetWidth);
totalSize += sizeof(m_NetHeight);
totalSize += sizeof(m_NumClasses);
totalSize += sizeof(m_NewCoords);
totalSize += sizeof(m_OutputSize);
uint yoloTensorsSize = m_YoloTensors.size();
totalSize += sizeof(yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i) {
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
totalSize += sizeof(curYoloTensor.gridSizeX);
totalSize += sizeof(curYoloTensor.gridSizeY);
totalSize += sizeof(curYoloTensor.numBBoxes);
totalSize += sizeof(curYoloTensor.scaleXY);
totalSize += sizeof(uint) + sizeof(curYoloTensor.anchors[0]) * curYoloTensor.anchors.size();
totalSize += sizeof(uint) + sizeof(curYoloTensor.mask[0]) * curYoloTensor.mask.size();
}
return totalSize;
}
void
YoloLayer::serialize(void* buffer) const noexcept
{
char* d = static_cast<char*>(buffer);
write(d, m_NetWidth);
write(d, m_NetHeight);
write(d, m_NumClasses);
write(d, m_NewCoords);
write(d, m_OutputSize);
uint yoloTensorsSize = m_YoloTensors.size();
write(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i) {
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
write(d, curYoloTensor.gridSizeX);
write(d, curYoloTensor.gridSizeY);
write(d, curYoloTensor.numBBoxes);
write(d, curYoloTensor.scaleXY);
uint anchorsSize = curYoloTensor.anchors.size();
write(d, anchorsSize);
for (uint j = 0; j < anchorsSize; ++j) {
write(d, curYoloTensor.anchors[j]);
}
uint maskSize = curYoloTensor.mask.size();
write(d, maskSize);
for (uint j = 0; j < maskSize; ++j) {
write(d, curYoloTensor.mask[j]);
}
}
}
nvinfer1::DimsExprs
YoloLayer::getOutputDimensions(INT index, const nvinfer1::DimsExprs* inputs, INT nbInputDims,
nvinfer1::IExprBuilder& exprBuilder)noexcept
{
assert(index < 1);
return nvinfer1::DimsExprs{3, {inputs->d[0], exprBuilder.constant(static_cast<int>(m_OutputSize)),
exprBuilder.constant(6)}};
}
bool
YoloLayer::supportsFormatCombination(INT pos, const nvinfer1::PluginTensorDesc* inOut, INT nbInputs, INT nbOutputs)
noexcept
{
return inOut[pos].format == nvinfer1::TensorFormat::kLINEAR && inOut[pos].type == nvinfer1::DataType::kFLOAT;
}
nvinfer1::DataType
YoloLayer::getOutputDataType(INT index, const nvinfer1::DataType* inputTypes, INT nbInputs) const noexcept
{
assert(index < 1);
return nvinfer1::DataType::kFLOAT;
}
void
YoloLayer::configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, INT nbInput,
const nvinfer1::DynamicPluginTensorDesc* out, INT nbOutput) noexcept
{
assert(nbInput > 0);
assert(in->desc.format == nvinfer1::PluginFormat::kLINEAR);
assert(in->desc.dims.d != nullptr);
}
INT
YoloLayer::enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept
{
INT batchSize = inputDesc[0].dims.d[0];
uint64_t lastInputSize = 0;
uint yoloTensorsSize = m_YoloTensors.size();
for (uint i = 0; i < yoloTensorsSize; ++i) {
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
const uint numBBoxes = curYoloTensor.numBBoxes;
const float scaleXY = curYoloTensor.scaleXY;
const uint gridSizeX = curYoloTensor.gridSizeX;
const uint gridSizeY = curYoloTensor.gridSizeY;
const std::vector<float> anchors = curYoloTensor.anchors;
const std::vector<int> mask = curYoloTensor.mask;
void* d_anchors;
void* d_mask;
if (anchors.size() > 0) {
CUDA_CHECK(cudaMalloc(&d_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMemcpyAsync(d_anchors, anchors.data(), sizeof(float) * anchors.size(), cudaMemcpyHostToDevice,
stream));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaMalloc(&d_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMemcpyAsync(d_mask, mask.data(), sizeof(int) * mask.size(), cudaMemcpyHostToDevice, stream));
}
const uint64_t inputSize = (numBBoxes * (4 + 1 + m_NumClasses)) * gridSizeY * gridSizeX;
if (mask.size() > 0) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc(inputs[i], outputs[0], batchSize, inputSize, m_OutputSize, lastInputSize,
m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, d_anchors, d_mask,
stream));
}
else {
CUDA_CHECK(cudaYoloLayer(inputs[i], outputs[0], batchSize, inputSize, m_OutputSize, lastInputSize, m_NetWidth,
m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, d_anchors, d_mask, stream));
}
}
else {
void* softmax;
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize, stream));
CUDA_CHECK(cudaRegionLayer(inputs[i], softmax, outputs[0], batchSize, inputSize, m_OutputSize, lastInputSize,
m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, d_anchors, stream));
CUDA_CHECK(cudaFree(softmax));
}
if (anchors.size() > 0) {
CUDA_CHECK(cudaFree(d_anchors));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaFree(d_mask));
}
lastInputSize += numBBoxes * gridSizeY * gridSizeX;
}
return 0;
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);