import os import sys import argparse import warnings import onnx import torch import torch.nn as nn from yolov6.utils.checkpoint import load_checkpoint from yolov6.layers.common import RepVGGBlock, SiLU from yolov6.models.effidehead import Detect try: from yolov6.layers.common import ConvModule except ImportError: from yolov6.layers.common import Conv as ConvModule class DeepStreamOutput(nn.Module): def __init__(self): super().__init__() def forward(self, x): boxes = x[:, :, :4] objectness = x[:, :, 4:5] scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True) scores *= objectness classes = classes.float() return boxes, scores, classes def suppress_warnings(): warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) def yolov6_export(weights, device): model = load_checkpoint(weights, map_location=device, inplace=True, fuse=True) for layer in model.modules(): if isinstance(layer, RepVGGBlock): layer.switch_to_deploy() elif isinstance(layer, nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'): layer.recompute_scale_factor = None model.eval() for k, m in model.named_modules(): if isinstance(m, ConvModule): if hasattr(m, 'act') and isinstance(m.act, nn.SiLU): m.act = SiLU() elif isinstance(m, Detect): m.inplace = False return model def main(args): suppress_warnings() print('\nStarting: %s' % args.weights) print('Opening YOLOv6 model\n') device = torch.device('cpu') model = yolov6_export(args.weights, device) model = nn.Sequential(model, DeepStreamOutput()) img_size = args.size * 2 if len(args.size) == 1 else args.size if img_size == [640, 640] and args.p6: img_size = [1280] * 2 onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'boxes': { 0: 'batch' }, 'scores': { 0: 'batch' }, 'classes': { 0: 'batch' } } print('\nExporting the model to ONNX') torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'], dynamic_axes=dynamic_axes if args.dynamic else None) if args.simplify: print('Simplifying the ONNX model') import onnxsim model_onnx = onnx.load(onnx_output_file) model_onnx, _ = onnxsim.simplify(model_onnx) onnx.save(model_onnx, onnx_output_file) print('Done: %s\n' % onnx_output_file) def parse_args(): parser = argparse.ArgumentParser(description='DeepStream YOLOv6 conversion') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--p6', action='store_true', help='P6 model') parser.add_argument('--opset', type=int, default=13, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time') return args if __name__ == '__main__': args = parse_args() sys.exit(main(args))