# YOLOR usage **NOTE**: Select the correct branch of the YOLOR repo before the conversion. **NOTE**: The cfg file is required for the main branch. * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_yolor file](#edit-the-config_infer_primary_yolor-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the YOLOR repo and install the requirements ``` git clone https://github.com/WongKinYiu/yolor.git cd yolor pip3 install -r requirements.txt pip3 install onnx onnxsim onnxruntime ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `export_yolor.py` file from `DeepStream-Yolo/utils` directory to the `yolor` folder. #### 3. Download the model Download the `pt` file from [YOLOR](https://github.com/WongKinYiu/yolor) repo. **NOTE**: You can use your custom model. #### 4. Convert model Generate the ONNX model file - Main branch Example for YOLOR-CSP ``` python3 export_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg --dynamic ``` - Paper branch Example for YOLOR-P6 ``` python3 export_yolor.py -w yolor-p6.pt --dynamic ``` **NOTE**: To convert a P6 model ``` --p6 ``` **NOTE**: To change the inference size (defaut: 640 / 1280 for `--p6` models) ``` -s SIZE --size SIZE -s HEIGHT WIDTH --size HEIGHT WIDTH ``` Example for 1280 ``` -s 1280 ``` or ``` -s 1280 1280 ``` **NOTE**: To simplify the ONNX model (DeepStream >= 6.0) ``` --simplify ``` **NOTE**: To use dynamic batch-size (DeepStream >= 6.1) ``` --dynamic ``` **NOTE**: To use implicit batch-size (example for batch-size = 4) ``` --batch 4 ``` **NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 12. ``` --opset 12 ``` #### 5. Copy generated files Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder ## ### Compile the lib Open the `DeepStream-Yolo` folder and compile the lib * DeepStream 6.2 on x86 platform ``` CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1.1 on x86 platform ``` CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1 on x86 platform ``` CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 5.1 on x86 platform ``` CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_yolor file Edit the `config_infer_primary_yolor.txt` file according to your model (example for YOLOR-CSP with 80 classes) ``` [property] ... onnx-file=yolor_csp.onnx ... num-detected-classes=80 ... parse-bbox-func-name=NvDsInferParseYolo ... ``` **NOTE**: The **YOLOR** resizes the input with center padding. To get better accuracy, use ``` ... maintain-aspect-ratio=1 symmetric-padding=1 ... ``` **NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line ``` ... force-implicit-batch-dim=1 ... ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_yolor.txt ``` ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes). **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.