/* * Created by Marcos Luciano * https://www.github.com/marcoslucianops */ #include __global__ void gpuYoloLayer_nc( const float* input, int* d_indexes, float* d_scores, float* d_boxes, int* d_classes, int* countData, const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float scaleXY, const float* anchors, const int* mask) { uint x_id = blockIdx.x * blockDim.x + threadIdx.x; uint y_id = blockIdx.y * blockDim.y + threadIdx.y; uint z_id = blockIdx.z * blockDim.z + threadIdx.z; if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes)) { return; } const int numGridCells = gridSizeX * gridSizeY; const int bbindex = y_id * gridSizeX + x_id; const float objectness = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]; if (objectness < scoreThreshold) return; int count = (int)atomicAdd(&countData[0], 1); const float alpha = scaleXY; const float beta = -0.5 * (scaleXY - 1); float x = (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta + x_id) * netWidth / gridSizeX; float y = (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta + y_id) * netHeight / gridSizeY; float w = __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2) * anchors[mask[z_id] * 2]; float h = __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2) * anchors[mask[z_id] * 2 + 1]; float maxProb = 0.0f; int maxIndex = -1; for (uint i = 0; i < numOutputClasses; ++i) { float prob = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]; if (prob > maxProb) { maxProb = prob; maxIndex = i; } } d_indexes[count] = count; d_scores[count] = objectness * maxProb + 1.f; d_boxes[count * 4 + 0] = x - 0.5 * w; d_boxes[count * 4 + 1] = y - 0.5 * h; d_boxes[count * 4 + 2] = x + 0.5 * w; d_boxes[count * 4 + 3] = y + 0.5 * h; d_classes[count] = maxIndex; } cudaError_t cudaYoloLayer_nc( const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream); cudaError_t cudaYoloLayer_nc( const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream) { dim3 threads_per_block(16, 16, 4); dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1, (numBBoxes / threads_per_block.z) + 1); for (unsigned int batch = 0; batch < batchSize; ++batch) { gpuYoloLayer_nc<<>>( reinterpret_cast(input) + (batch * inputSize), reinterpret_cast(d_indexes) + (batch * outputSize), reinterpret_cast(d_scores) + (batch * outputSize), reinterpret_cast(d_boxes) + (batch * 4 * outputSize), reinterpret_cast(d_classes) + (batch * outputSize), reinterpret_cast(countData) + (batch), scoreThreshold, netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, scaleXY, reinterpret_cast(anchors), reinterpret_cast(mask)); } return cudaGetLastError(); }