import os import onnx import torch import torch.nn as nn from damo.config.base import parse_config from damo.utils.model_utils import replace_module from damo.base_models.core.ops import RepConv, SiLU from damo.detectors.detector import build_local_model class DeepStreamOutput(nn.Module): def __init__(self): super().__init__() def forward(self, x): boxes = x[1] scores, labels = torch.max(x[0], dim=-1, keepdim=True) return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1) def suppress_warnings(): import warnings warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=ResourceWarning) def damoyolo_export(weights, config_file, device): config = parse_config(config_file) config.model.head.export_with_post = True model = build_local_model(config, device) ckpt = torch.load(weights, map_location=device) model.eval() if 'model' in ckpt: ckpt = ckpt['model'] model.load_state_dict(ckpt, strict=True) model = replace_module(model, nn.SiLU, SiLU) for layer in model.modules(): if isinstance(layer, RepConv): layer.switch_to_deploy() model.head.nms = False return config, model def main(args): suppress_warnings() print(f'\nStarting: {args.weights}') print('Opening DAMO-YOLO model') device = torch.device('cpu') cfg, model = damoyolo_export(args.weights, args.config, device) if len(cfg.dataset['class_names']) > 0: print('Creating labels.txt file') with open('labels.txt', 'w', encoding='utf-8') as f: for name in cfg.dataset['class_names']: f.write(f'{name}\n') model = nn.Sequential(model, DeepStreamOutput()) img_size = args.size * 2 if len(args.size) == 1 else args.size onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = f'{args.weights}.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'output': { 0: 'batch' } } print('Exporting the model to ONNX') torch.onnx.export( model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None ) if args.simplify: print('Simplifying the ONNX model') import onnxslim model_onnx = onnx.load(onnx_output_file) model_onnx = onnxslim.slim(model_onnx) onnx.save(model_onnx, onnx_output_file) print(f'Done: {onnx_output_file}\n') def parse_args(): import argparse parser = argparse.ArgumentParser(description='DeepStream DAMO-YOLO conversion') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)') parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--opset', type=int, default=11, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Static batch-size') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if not os.path.isfile(args.config): raise SystemExit('Invalid config file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time') return args if __name__ == '__main__': args = parse_args() main(args)