/* * Created by Marcos Luciano * https://www.github.com/marcoslucianops */ #include inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); } __global__ void gpuYoloLayer(const float* input, float* boxes, float* scores, float* classes, const uint netWidth, const uint netHeight, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const uint64_t lastInputSize, const float scaleXY, const float* anchors, const int* mask) { uint x_id = blockIdx.x * blockDim.x + threadIdx.x; uint y_id = blockIdx.y * blockDim.y + threadIdx.y; uint z_id = blockIdx.z * blockDim.z + threadIdx.z; if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes) { return; } const int numGridCells = gridSizeX * gridSizeY; const int bbindex = y_id * gridSizeX + x_id; const float alpha = scaleXY; const float beta = -0.5 * (scaleXY - 1); float xc = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) * alpha + beta + x_id) * netWidth / gridSizeX; float yc = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) * alpha + beta + y_id) * netHeight / gridSizeY; float w = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]) * anchors[mask[z_id] * 2]; float h = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]) * anchors[mask[z_id] * 2 + 1]; const float objectness = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]); float maxProb = 0.0f; int maxIndex = -1; for (uint i = 0; i < numOutputClasses; ++i) { float prob = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]); if (prob > maxProb) { maxProb = prob; maxIndex = i; } } int count = numGridCells * z_id + bbindex + lastInputSize; boxes[count * 4 + 0] = xc; boxes[count * 4 + 1] = yc; boxes[count * 4 + 2] = w; boxes[count * 4 + 3] = h; scores[count] = maxProb * objectness; classes[count] = (float) maxIndex; } cudaError_t cudaYoloLayer(const void* input, void* boxes, void* scores, void* classes, const uint& batchSize, const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream); cudaError_t cudaYoloLayer(const void* input, void* boxes, void* scores, void* classes, const uint& batchSize, const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream) { dim3 threads_per_block(16, 16, 4); dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1, (numBBoxes / threads_per_block.z) + 1); for (unsigned int batch = 0; batch < batchSize; ++batch) { gpuYoloLayer<<>>( reinterpret_cast (input) + (batch * inputSize), reinterpret_cast (boxes) + (batch * 4 * outputSize), reinterpret_cast (scores) + (batch * 1 * outputSize), reinterpret_cast (classes) + (batch * 1 * outputSize), netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, lastInputSize, scaleXY, reinterpret_cast (anchors), reinterpret_cast (mask)); } return cudaGetLastError(); }