# YOLOv6 usage **NOTE**: The yaml file is not required. * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_yoloV6 file](#edit-the-config_infer_primary_yolov6-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the YOLOv6 repo and install the requirements ``` git clone https://github.com/meituan/YOLOv6.git cd YOLOv6 pip3 install -r requirements.txt ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `gen_wts_yoloV6.py` file from `DeepStream-Yolo/utils` directory to the `YOLOv6` folder. #### 3. Download the model Download the `pt` file from [YOLOv6](https://github.com/meituan/YOLOv6/releases/) releases (example for YOLOv6-S 3.0) ``` wget https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt ``` **NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov6_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly. #### 4. Convert model Generate the `cfg` and `wts` files (example for YOLOv6-S 3.0) ``` python3 gen_wts_yoloV6.py -w yolov6s.pt ``` **NOTE**: To convert a P6 model ``` --p6 ``` **NOTE**: To change the inference size (defaut: 640) ``` -s SIZE --size SIZE -s HEIGHT WIDTH --size HEIGHT WIDTH ``` Example for 1280 ``` -s 1280 ``` or ``` -s 1280 1280 ``` #### 5. Copy generated files Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder. ## ### Compile the lib Open the `DeepStream-Yolo` folder and compile the lib * DeepStream 6.1.1 on x86 platform ``` CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1 on x86 platform ``` CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1.1 / 6.1 on Jetson platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_yoloV6 file Edit the `config_infer_primary_yoloV6.txt` file according to your model (example for YOLOv6-S 3.0 with 80 classes) ``` [property] ... custom-network-config=yolov6s.cfg model-file=yolov6s.wts ... num-detected-classes=80 ... ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_yoloV6.txt ``` ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.