# YOLOv6 usage **NOTE**: You need to change the branch of the YOLOv6 repo according to the version of the model you want to convert. **NOTE**: The yaml file is not required. * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_yoloV6 file](#edit-the-config_infer_primary_yolov6-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the YOLOv6 repo and install the requirements ``` git clone https://github.com/meituan/YOLOv6.git cd YOLOv6 pip3 install -r requirements.txt pip3 install onnx onnxslim onnxruntime ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `export_yoloV6.py` file from `DeepStream-Yolo/utils` directory to the `YOLOv6` folder. #### 3. Download the model Download the `pt` file from [YOLOv6](https://github.com/meituan/YOLOv6/releases/) releases (example for YOLOv6-S 4.0) ``` wget https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6s.pt ``` **NOTE**: You can use your custom model. #### 4. Convert model Generate the ONNX model file (example for YOLOv6-S 4.0) ``` python3 export_yoloV6.py -w yolov6s.pt --dynamic ``` **NOTE**: To convert a P6 model ``` --p6 ``` **NOTE**: To change the inference size (defaut: 640 / 1280 for `--p6` models) ``` -s SIZE --size SIZE -s HEIGHT WIDTH --size HEIGHT WIDTH ``` Example for 1280 ``` -s 1280 ``` or ``` -s 1280 1280 ``` **NOTE**: To simplify the ONNX model (DeepStream >= 6.0) ``` --simplify ``` **NOTE**: To use dynamic batch-size (DeepStream >= 6.1) ``` --dynamic ``` **NOTE**: To use static batch-size (example for batch-size = 4) ``` --batch 4 ``` **NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 13. ``` --opset 12 ``` #### 5. Copy generated file Copy the generated ONNX model file to the `DeepStream-Yolo` folder. ## ### Compile the lib 1. Open the `DeepStream-Yolo` folder and compile the lib 2. Set the `CUDA_VER` according to your DeepStream version ``` export CUDA_VER=XY.Z ``` * x86 platform ``` DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 = 12.1 DeepStream 6.2 = 11.8 DeepStream 6.1.1 = 11.7 DeepStream 6.1 = 11.6 DeepStream 6.0.1 / 6.0 = 11.4 DeepStream 5.1 = 11.1 ``` * Jetson platform ``` DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4 DeepStream 6.0.1 / 6.0 / 5.1 = 10.2 ``` 3. Make the lib ``` make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_yoloV6 file Edit the `config_infer_primary_yoloV6.txt` file according to your model (example for YOLOv6-S 4.0 with 80 classes) ``` [property] ... onnx-file=yolov6s.pt.onnx ... num-detected-classes=80 ... parse-bbox-func-name=NvDsInferParseYolo ... ``` **NOTE**: The **YOLOv6** resizes the input with center padding. To get better accuracy, use ``` [property] ... maintain-aspect-ratio=1 symmetric-padding=1 ... ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_yoloV6.txt ``` ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes). **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.