# DeepStream-Yolo NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models ### Future updates * Models benchmarks * DeepStream tutorials * YOLOX support * PP-YOLO support * YOLOv6 support * YOLOv7 support * Dynamic batch-size ### Improvements on this repository * Darknet cfg params parser (no need to edit `nvdsparsebbox_Yolo.cpp` or other files) * Support for `new_coords` and `scale_x_y` params * Support for new models * Support for new layers * Support for new activations * Support for convolutional groups * Support for INT8 calibration * Support for non square models * New documentation for multiple models * **YOLOv5 >= 2.0 support** * **YOLOR support** * **GPU YOLO Decoder** [#138](https://github.com/marcoslucianops/DeepStream-Yolo/issues/138) * **GPU Batched NMS** [#142](https://github.com/marcoslucianops/DeepStream-Yolo/issues/142) * **New YOLOv5 conversion** ## ### Getting started * [Requirements](#requirements) * [Tested models](#tested-models) * [Benchmarks](#benchmarks) * [dGPU installation](#dgpu-installation) * [Basic usage](#basic-usage) * [NMS configuration](#nms-configuration) * [INT8 calibration](#int8-calibration) * [YOLOv5 usage](docs/YOLOv5.md) * [YOLOR usage](docs/YOLOR.md) * [Using your custom model](docs/customModels.md) * [Multiple YOLO GIEs](docs/multipleGIEs.md) ## ### Requirements #### DeepStream 6.1 on x86 platform * [Ubuntu 20.04](https://releases.ubuntu.com/20.04/) * [CUDA 11.6 Update 1](https://developer.nvidia.com/cuda-11-6-1-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local) * [TensorRT 8.2 GA Update 4 (8.2.5.1)](https://developer.nvidia.com/nvidia-tensorrt-8x-download) * [NVIDIA Driver 510.47.03](https://www.nvidia.com.br/Download/index.aspx) * [NVIDIA DeepStream SDK 6.1](https://developer.nvidia.com/deepstream-getting-started) * [GStreamer 1.16.2](https://gstreamer.freedesktop.org/) * [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) #### DeepStream 6.0.1 / 6.0 on x86 platform * [Ubuntu 18.04](https://releases.ubuntu.com/18.04.6/) * [CUDA 11.4 Update 1](https://developer.nvidia.com/cuda-11-4-1-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=18.04&target_type=runfile_local) * [TensorRT 8.0 GA (8.0.1)](https://developer.nvidia.com/nvidia-tensorrt-8x-download) * [NVIDIA Driver >= 470.63.01](https://www.nvidia.com.br/Download/index.aspx) * [NVIDIA DeepStream SDK 6.0.1 / 6.0](https://developer.nvidia.com/deepstream-sdk-download-tesla-archived) * [GStreamer 1.14.5](https://gstreamer.freedesktop.org/) * [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) #### DeepStream 6.1 on Jetson platform * [JetPack 5.0.1 DP](https://developer.nvidia.com/embedded/jetpack) * [NVIDIA DeepStream SDK 6.1](https://developer.nvidia.com/deepstream-sdk) * [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) #### DeepStream 6.0.1 / 6.0 on Jetson platform * [JetPack 4.6.1](https://developer.nvidia.com/embedded/jetpack-sdk-461) * [NVIDIA DeepStream SDK 6.0.1 / 6.0](https://developer.nvidia.com/embedded/deepstream-on-jetson-downloads-archived) * [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) ### For YOLOv5 and YOLOR #### x86 platform * [PyTorch >= 1.7.0](https://pytorch.org/get-started/locally/) #### Jetson platform * [PyTorch >= 1.7.0](https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-11-now-available/72048) ## ### Tested models * [Darknet YOLO](https://github.com/AlexeyAB/darknet) * [YOLOv5 >= 2.0](https://github.com/ultralytics/yolov5) * [YOLOR](https://github.com/WongKinYiu/yolor) * [MobileNet-YOLO](https://github.com/dog-qiuqiu/MobileNet-Yolo) * [YOLO-Fastest](https://github.com/dog-qiuqiu/Yolo-Fastest) ## ### Benchmarks New tests comming soon. ## ### dGPU installation To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.
DeepStream 6.1 #### 1. Disable Secure Boot in BIOS #### 2. Install dependencies ``` sudo apt-get update sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake sudo apt-get install python3 python3-dev python3-pip sudo apt-get install dkms sudo apt-get install libssl1.1 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4 libyaml-cpp-dev sudo apt-get install linux-headers-$(uname -r) ``` **NOTE**: Purge all NVIDIA driver, CUDA, etc (replace $CUDA_PATH to your CUDA path) ``` sudo nvidia-uninstall sudo $CUDA_PATH/bin/cuda-uninstaller sudo apt-get remove --purge '*nvidia*' sudo apt-get remove --purge '*cuda*' sudo apt-get remove --purge '*cudnn*' sudo apt-get remove --purge '*tensorrt*' sudo apt autoremove --purge && sudo apt autoclean && sudo apt clean ``` #### 3. Install CUDA Keyring ``` wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update ``` #### 4. Download and install NVIDIA Driver * TITAN, GeForce RTX / GTX series and RTX / Quadro series ``` wget https://us.download.nvidia.com/XFree86/Linux-x86_64/510.47.03/NVIDIA-Linux-x86_64-510.47.03.run ``` * Data center / Tesla series ``` wget https://us.download.nvidia.com/tesla/510.47.03/NVIDIA-Linux-x86_64-510.47.03.run ``` * Run ``` sudo sh NVIDIA-Linux-x86_64-510.47.03.run --silent --disable-nouveau --dkms --install-libglvnd ``` **NOTE**: This step will disable the nouveau drivers. * Reboot ``` sudo reboot ``` * Install ``` sudo sh NVIDIA-Linux-x86_64-510.47.03.run --silent --disable-nouveau --dkms --install-libglvnd ``` **NOTE**: If you are using a laptop with NVIDIA Optimius, run ``` sudo apt-get install nvidia-prime sudo prime-select nvidia ``` #### 5. Download and install CUDA ``` wget https://developer.download.nvidia.com/compute/cuda/11.6.1/local_installers/cuda_11.6.1_510.47.03_linux.run sudo sh cuda_11.6.1_510.47.03_linux.run --silent --toolkit ``` * Export environment variables ``` echo $'export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}}\nexport LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc && source ~/.bashrc ``` #### 6. Download from [NVIDIA website](https://developer.nvidia.com/nvidia-tensorrt-8x-download) and install the TensorRT TensorRT 8.2 GA Update 4 for Ubuntu 20.04 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4 and 11.5 DEB local repo Package ``` sudo dpkg -i nv-tensorrt-repo-ubuntu2004-cuda11.4-trt8.2.5.1-ga-20220505_1-1_amd64.deb sudo apt-key add /var/nv-tensorrt-repo-ubuntu2004-cuda11.4-trt8.2.5.1-ga-20220505/82307095.pub sudo apt-get update sudo apt-get install libnvinfer8=8.2.5-1+cuda11.4 libnvinfer-plugin8=8.2.5-1+cuda11.4 libnvparsers8=8.2.5-1+cuda11.4 libnvonnxparsers8=8.2.5-1+cuda11.4 libnvinfer-bin=8.2.5-1+cuda11.4 libnvinfer-dev=8.2.5-1+cuda11.4 libnvinfer-plugin-dev=8.2.5-1+cuda11.4 libnvparsers-dev=8.2.5-1+cuda11.4 libnvonnxparsers-dev=8.2.5-1+cuda11.4 libnvinfer-samples=8.2.5-1+cuda11.4 libnvinfer-doc=8.2.5-1+cuda11.4 libcudnn8-dev=8.4.0.27-1+cuda11.6 libcudnn8=8.4.0.27-1+cuda11.6 sudo apt-mark hold libnvinfer* libnvparsers* libnvonnxparsers* libcudnn8* tensorrt ``` #### 7. Download from [NVIDIA website](https://developer.nvidia.com/deepstream-getting-started) and install the DeepStream SDK DeepStream 6.1 for Servers and Workstations (.deb) ``` sudo apt-get install ./deepstream-6.1_6.1.0-1_amd64.deb rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin sudo ln -snf /usr/local/cuda-11.6 /usr/local/cuda ``` #### 8. Reboot the computer ``` sudo reboot ```
DeepStream 6.0.1 / 6.0 #### 1. Disable Secure Boot in BIOS
If you are using a laptop with newer Intel/AMD processors and your Graphics in Settings->Details->About tab is llvmpipe, please update the kernel. ``` wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-image-unsigned-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-modules-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb sudo dpkg -i *.deb sudo reboot ```
#### 2. Install dependencies ``` sudo apt-get update sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake sudo apt-get install python3 python3-dev python3-pip sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4 sudo apt-get install linux-headers-$(uname -r) ``` **NOTE**: Install DKMS only if you are using the default Ubuntu kernel ``` sudo apt-get install dkms ``` **NOTE**: Purge all NVIDIA driver, CUDA, etc (replace $CUDA_PATH to your CUDA path) ``` sudo nvidia-uninstall sudo $CUDA_PATH/bin/cuda-uninstaller sudo apt-get remove --purge '*nvidia*' sudo apt-get remove --purge '*cuda*' sudo apt-get remove --purge '*cudnn*' sudo apt-get remove --purge '*tensorrt*' sudo apt autoremove --purge && sudo apt autoclean && sudo apt clean ``` #### 3. Install CUDA Keyring ``` wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update ``` #### 4. Download and install NVIDIA Driver * TITAN, GeForce RTX / GTX series and RTX / Quadro series ``` wget https://us.download.nvidia.com/XFree86/Linux-x86_64/470.129.06/NVIDIA-Linux-x86_64-470.129.06.run ``` * Data center / Tesla series ``` wget https://us.download.nvidia.com/tesla/470.129.06/NVIDIA-Linux-x86_64-470.129.06.run ``` * Run ``` sudo sh NVIDIA-Linux-x86_64-470.129.06.run --silent --disable-nouveau --dkms --install-libglvnd ``` **NOTE**: This step will disable the nouveau drivers. **NOTE**: Remove --dkms flag if you installed the 5.11.0 kernel. * Reboot ``` sudo reboot ``` * Install ``` sudo sh NVIDIA-Linux-x86_64-470.129.06.run --silent --disable-nouveau --dkms --install-libglvnd ``` **NOTE**: Remove --dkms flag if you installed the 5.11.0 kernel. **NOTE**: If you are using a laptop with NVIDIA Optimius, run ``` sudo apt-get install nvidia-prime sudo prime-select nvidia ``` #### 5. Download and install CUDA ``` wget https://developer.download.nvidia.com/compute/cuda/11.4.1/local_installers/cuda_11.4.1_470.57.02_linux.run sudo sh cuda_11.4.1_470.57.02_linux.run --silent --toolkit ``` * Export environment variables ``` echo $'export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}\nexport LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc && source ~/.bashrc ``` #### 6. Download from [NVIDIA website](https://developer.nvidia.com/nvidia-tensorrt-8x-download) and install the TensorRT TensorRT 8.0.1 GA for Ubuntu 18.04 and CUDA 11.3 DEB local repo package ``` sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub sudo apt-get update sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3 libcudnn8-dev=8.2.1.32-1+cuda11.3 libcudnn8=8.2.1.32-1+cuda11.3 sudo apt-mark hold libnvinfer* libnvparsers* libnvonnxparsers* libcudnn8* tensorrt ``` #### 7. Download from [NVIDIA website](https://developer.nvidia.com/deepstream-sdk-download-tesla-archived) and install the DeepStream SDK * DeepStream 6.0.1 for Servers and Workstations (.deb) ``` sudo apt-get install ./deepstream-6.0_6.0.1-1_amd64.deb ``` * DeepStream 6.0 for Servers and Workstations (.deb) ``` sudo apt-get install ./deepstream-6.0_6.0.0-1_amd64.deb ``` * Run ``` rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin sudo ln -snf /usr/local/cuda-11.4 /usr/local/cuda ``` #### 8. Reboot the computer ``` sudo reboot ```
## ### Basic usage #### 1. Download the repo ``` git clone https://github.com/marcoslucianops/DeepStream-Yolo.git cd DeepStream-Yolo ``` #### 2. Download the `cfg` and `weights` files from [Darknet](https://github.com/AlexeyAB/darknet) repo to the DeepStream-Yolo folder #### 3. Compile the lib * DeepStream 6.1 on x86 platform ``` CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1 on Jetson platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` #### 4. Edit the `config_infer_primary.txt` file according to your model (example for YOLOv4) ``` [property] ... custom-network-config=yolov4.cfg model-file=yolov4.weights ... ``` #### 5. Run ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: If you want to use YOLOv2 or YOLOv2-Tiny models, change the `deepstream_app_config.txt` file before run it ``` ... [primary-gie] ... config-file=config_infer_primary_yoloV2.txt ... ``` ## ### NMS Configuration To change the `iou-threshold`, `score-threshold` and `topk` values, modify the `config_nms.txt` file and regenerate the model engine file. ``` [property] iou-threshold=0.45 score-threshold=0.25 topk=300 ``` **NOTE**: Lower `topk` values will result in more performance. **NOTE**: Make sure to set `cluster-mode=4` in the config_infer file. **NOTE**: You are still able to change the `pre-cluster-threshold` values in the config_infer files. ## ### INT8 calibration #### 1. Install OpenCV ``` sudo apt-get install libopencv-dev ``` #### 2. Compile/recompile the `nvdsinfer_custom_impl_Yolo` lib with OpenCV support * DeepStream 6.1 on x86 platform ``` CUDA_VER=11.6 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on x86 platform ``` CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1 on Jetson platform ``` CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on Jetson platform ``` CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo ``` #### 3. For COCO dataset, download the [val2017](https://drive.google.com/file/d/1gbvfn7mcsGDRZ_luJwtITL-ru2kK99aK/view?usp=sharing), extract, and move to DeepStream-Yolo folder * Select 1000 random images from COCO dataset to run calibration ``` mkdir calibration ``` ``` for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \ cp ${jpg} calibration/; \ done ``` * Create the `calibration.txt` file with all selected images ``` realpath calibration/*jpg > calibration.txt ``` * Set environment variables ``` export INT8_CALIB_IMG_PATH=calibration.txt export INT8_CALIB_BATCH_SIZE=1 ``` * Edit the `config_infer` file ``` ... model-engine-file=model_b1_gpu0_fp32.engine #int8-calib-file=calib.table ... network-mode=0 ... ``` To ``` ... model-engine-file=model_b1_gpu0_int8.engine int8-calib-file=calib.table ... network-mode=1 ... ``` * Run ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: NVIDIA recommends at least 500 images to get a good accuracy. On this example, I used 1000 images to get better accuracy (more images = more accuracy). Higher `INT8_CALIB_BATCH_SIZE` values will result in more accuracy and faster calibration speed. Set it according to you GPU memory. This process can take a long time. ## ### Extract metadata You can get metadata from DeepStream using Python and C/C++. For C/C++, you can edit the `deepstream-app` or `deepstream-test` codes. For Python, your can install and edit [deepstream_python_apps](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps). Basically, you need manipulate the `NvDsObjectMeta` ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html) / [C/C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsObjectMeta.html)) `and NvDsFrameMeta` ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html) / [C/C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsFrameMeta.html)) to get the label, position, etc. of bboxes. ## My projects: https://www.youtube.com/MarcosLucianoTV