# DeepStream-Yolo NVIDIA DeepStream SDK 6.0 configuration for YOLO models ### Future updates (comming soon, stay tuned) * New documentation for multiple models * DeepStream tutorials * Native PyTorch support (YOLOv5 and YOLOR) * Native PP-YOLO support * Models benchmark **NOTE**: The support for YOLOv5 was removed in this current update. If you want the old repo version, please use the commit 297e0e9 and DeepStream 5.1 requirements. ### Improvements on this repository * Darknet CFG params parser (it doesn't need to edit nvdsparsebbox_Yolo.cpp or another file for native models) * Support for new_coords, beta_nms and scale_x_y params * Support for new models * Support for new layers types * Support for new activations * Support for convolutional groups * Support for INT8 calibration * Support for non square models ## ### Getting started * [Requirements](#requirements) * [Tested models](#tested-models) * [dGPU installation](#dgpu-installation) * [Basic usage](#basic-usage) * [INT8 calibration](#int8-calibration) * [Using your custom model](docs/customModels.md) ## ### Requirements * [Ubuntu 18.04](https://releases.ubuntu.com/18.04.6/) * [CUDA 11.4.3](https://developer.nvidia.com/cuda-toolkit) * [TensorRT 8.0 GA (8.0.1)](https://developer.nvidia.com/tensorrt) * [cuDNN >= 8.2](https://developer.nvidia.com/cudnn) * [NVIDIA Driver >= 470.63.01](https://www.nvidia.com.br/Download/index.aspx) * [NVIDIA DeepStream SDK 6.0](https://developer.nvidia.com/deepstream-sdk) * [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) ## ### Tested models * [YOLOv4x-Mish](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4x-mish.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.weights)] * [YOLOv4-CSP](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-csp) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-csp.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.weights)] * [YOLOv4](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights)] * [YOLOv4-Tiny](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights)] * [YOLOv3-SPP](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-spp.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-spp.weights)] * [YOLOv3](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg)] [[weights](https://pjreddie.com/media/files/yolov3.weights)] * [YOLOv3-Tiny-PRN](https://github.com/WongKinYiu/PartialResidualNetworks) [[cfg](https://raw.githubusercontent.com/WongKinYiu/PartialResidualNetworks/master/cfg/yolov3-tiny-prn.cfg)] [[weights](https://github.com/WongKinYiu/PartialResidualNetworks/raw/master/model/yolov3-tiny-prn.weights)] * [YOLOv3-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-tiny.weights)] * [YOLOv3-Lite](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.weights)] * [YOLOv3-Nano](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.weights)] * [YOLO-Fastest 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.weights)] * [YOLO-Fastest-XL 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.weights)] * [YOLOv2](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2.cfg)] [[weights](https://pjreddie.com/media/files/yolov2.weights)] * [YOLOv2-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov2-tiny.weights)] ## ### dGPU installation To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.
Open #### 1. Disable Secure Boot in BIOS
If you are using a laptop with newer Intel/AMD processors, please update the kernel to newer version. ``` wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-image-unsigned-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-modules-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb sudo dpkg -i *.deb sudo reboot ```
#### 2. Install dependencies ``` sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake sudo apt-get install python3 python3-dev python3-pip sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4 sudo apt-get install linux-headers-$(uname -r) ``` **NOTE**: Install DKMS if you are using the default Ubuntu kernel ``` sudo apt-get install dkms ``` **NOTE**: Purge all NVIDIA driver, CUDA, etc. #### 3. Disable Nouveau ``` sudo nano /etc/modprobe.d/blacklist-nouveau.conf ``` * Add ``` blacklist nouveau options nouveau modeset=0 ``` * Run ``` sudo update-initramfs -u ``` #### 4. Reboot the computer ``` sudo reboot ``` #### 5. Download and install NVIDIA Driver without xconfig ``` wget https://us.download.nvidia.com/tesla/470.82.01/NVIDIA-Linux-x86_64-470.82.01.run sudo sh NVIDIA-Linux-x86_64-470.82.01.run ``` **NOTE**: If you are using default Ubuntu kernel, enable the DKMS during the installation. Else, you can skip this driver installation and install the NVIDIA driver from CUDA runfile (next step). #### 6. Download and install CUDA 11.4.3 without NVIDIA Driver ``` wget https://developer.download.nvidia.com/compute/cuda/11.4.3/local_installers/cuda_11.4.3_470.82.01_linux.run sudo sh cuda_11.4.3_470.82.01_linux.run ``` * Export environment variables ``` nano ~/.bashrc ``` * Add ``` export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` * Run ``` source ~/.bashrc sudo ldconfig ``` **NOTE**: If you are using a laptop with NVIDIA Optimius, run ``` sudo apt-get install nvidia-prime sudo prime-select nvidia ``` #### 7. Download from [NVIDIA website](https://developer.nvidia.com/nvidia-tensorrt-8x-download) and install the TensorRT 8.0 GA (8.0.1) ``` echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda-repo.list wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub sudo apt-key add 7fa2af80.pub sudo apt-get update sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub sudo apt-get update sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3 ``` #### 8. Download from [NVIDIA website](https://developer.nvidia.com/deepstream-sdk) and install the DeepStream SDK 6.0 ``` sudo apt-get install ./deepstream-6.0_6.0.0-1_amd64.deb rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin ``` #### 9. Reboot the computer ``` sudo reboot ```
## ### Basic usage #### 1. Download the repo ``` git clone https://github.com/marcoslucianops/DeepStream-Yolo.git cd DeepStream-Yolo ``` #### 2. Download cfg and weights files from your model and move to DeepStream-Yolo folder #### 3. Compile lib * x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` #### 4. Edit config_infer_primary.txt for your model (example for YOLOv4) ``` [property] ... # 0=RGB, 1=BGR, 2=GRAYSCALE model-color-format=0 # CFG custom-network-config=yolov4.cfg # Weights model-file=yolov4.weights # Generated TensorRT model (will be created if it doesn't exist) model-engine-file=model_b1_gpu0_fp32.engine # Model labels file labelfile-path=labels.txt # Batch size batch-size=1 # 0=FP32, 1=INT8, 2=FP16 mode network-mode=0 # Number of classes in label file num-detected-classes=80 ... [class-attrs-all] # CONF_THRESH pre-cluster-threshold=0.25 ``` #### 5. Run ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt file before run it ``` [primary-gie] enable=1 gpu-id=0 gie-unique-id=1 nvbuf-memory-type=0 config-file=config_infer_primary_yoloV2.txt ``` **NOTE**: The config_infer_primary.txt file uses cluster-mode=4 and NMS = 0.45 (via code) when beta_nms isn't available (when beta_nms is available, NMS = beta_nms), while the config_infer_primary_yoloV2.txt file uses cluster-mode=2 and nms-iou-threshold=0.45 to set NMS. ## ### INT8 calibration #### 1. Install OpenCV ``` sudo apt-get install libopencv-dev ``` #### 2. Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support * x86 platform ``` cd DeepStream-Yolo CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo ``` * Jetson platform ``` cd DeepStream-Yolo CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo ``` #### 3. For COCO dataset, download the [val2017](https://drive.google.com/file/d/1gbvfn7mcsGDRZ_luJwtITL-ru2kK99aK/view?usp=sharing), extract, and move to DeepStream-Yolo folder ##### Select 1000 random images from COCO dataset to run calibration ``` mkdir calibration ``` ``` for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \ cp ${jpg} calibration/; \ done ``` ##### Create the calibration.txt file with all selected images ``` realpath calibration/*jpg > calibration.txt ``` ##### Set environment variables ``` export INT8_CALIB_IMG_PATH=calibration.txt export INT8_CALIB_BATCH_SIZE=1 ``` ##### Change config_infer_primary.txt file ``` ... model-engine-file=model_b1_gpu0_fp32.engine #int8-calib-file=calib.table ... network-mode=0 ... ``` * To ``` ... model-engine-file=model_b1_gpu0_int8.engine int8-calib-file=calib.table ... network-mode=1 ... ``` ##### Run ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time. ## ### Extract metadata You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit [deepstream_python_apps](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps). You need manipulate NvDsObjectMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsObjectMeta.html)), NvDsFrameMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsFrameMeta.html)) and NvOSD_RectParams ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvOSD/NvOSD_RectParams.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvOSD__RectParams.html)) to get label, position, etc. of bboxes. In C++ deepstream-app application, your code need be in analytics_done_buf_prob function. In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function. ## My projects: https://www.youtube.com/MarcosLucianoTV (new videos and tutorials comming soon)