/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * Edited by Marcos Luciano * https://www.github.com/marcoslucianops */ #include "yoloPlugins.h" #include "NvInferPlugin.h" #include #include #include int kNUM_CLASSES; float kBETA_NMS; std::vector kANCHORS; std::vector> kMASK; namespace { template void write(char*& buffer, const T& val) { *reinterpret_cast(buffer) = val; buffer += sizeof(T); } template void read(const char*& buffer, T& val) { val = *reinterpret_cast(buffer); buffer += sizeof(T); } } cudaError_t cudaYoloLayer ( const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const uint modelCoords, const float modelScale, const uint modelType); YoloLayer::YoloLayer (const void* data, size_t length) { const char *d = static_cast(data); read(d, m_NumBoxes); read(d, m_NumClasses); read(d, m_GridSizeX); read(d, m_GridSizeY); read(d, m_OutputSize); read(d, m_type); read(d, m_new_coords); read(d, m_scale_x_y); read(d, m_beta_nms); uint anchorsSize; read(d, anchorsSize); for (uint i = 0; i < anchorsSize; i++) { float result; read(d, result); m_Anchors.push_back(result); } uint maskSize; read(d, maskSize); for (uint i = 0; i < maskSize; i++) { uint nMask; read(d, nMask); std::vector pMask; for (uint f = 0; f < nMask; f++) { int result; read(d, result); pMask.push_back(result); } m_Mask.push_back(pMask); } kNUM_CLASSES = m_NumClasses; kBETA_NMS = m_beta_nms; kANCHORS = m_Anchors; kMASK = m_Mask; }; YoloLayer::YoloLayer ( const uint& numBoxes, const uint& numClasses, const uint& gridSizeX, const uint& gridSizeY, const uint model_type, const uint new_coords, const float scale_x_y, const float beta_nms, const std::vector anchors, std::vector> mask) : m_NumBoxes(numBoxes), m_NumClasses(numClasses), m_GridSizeX(gridSizeX), m_GridSizeY(gridSizeY), m_type(model_type), m_new_coords(new_coords), m_scale_x_y(scale_x_y), m_beta_nms(beta_nms), m_Anchors(anchors), m_Mask(mask) { assert(m_NumBoxes > 0); assert(m_NumClasses > 0); assert(m_GridSizeX > 0); assert(m_GridSizeY > 0); m_OutputSize = m_GridSizeX * m_GridSizeY * (m_NumBoxes * (4 + 1 + m_NumClasses)); }; nvinfer1::Dims YoloLayer::getOutputDimensions( int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept { assert(index == 0); assert(nbInputDims == 1); return inputs[0]; } bool YoloLayer::supportsFormat ( nvinfer1::DataType type, nvinfer1::PluginFormat format) const noexcept { return (type == nvinfer1::DataType::kFLOAT && format == nvinfer1::PluginFormat::kLINEAR); } void YoloLayer::configureWithFormat ( const nvinfer1::Dims* inputDims, int nbInputs, const nvinfer1::Dims* outputDims, int nbOutputs, nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept { assert(nbInputs == 1); assert (format == nvinfer1::PluginFormat::kLINEAR); assert(inputDims != nullptr); } int YoloLayer::enqueue( int batchSize, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept { CHECK(cudaYoloLayer( inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes, m_OutputSize, stream, m_new_coords, m_scale_x_y, m_type)); return 0; } size_t YoloLayer::getSerializationSize() const noexcept { int anchorsSum = 1; for (uint i = 0; i < m_Anchors.size(); i++) { anchorsSum += 1; } int maskSum = 1; for (uint i = 0; i < m_Mask.size(); i++) { maskSum += 1; for (uint f = 0; f < m_Mask[i].size(); f++) { maskSum += 1; } } return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSizeX) + sizeof(m_GridSizeY) + sizeof(m_OutputSize) + sizeof(m_type) + sizeof(m_new_coords) + sizeof(m_scale_x_y) + sizeof(m_beta_nms) + anchorsSum * sizeof(float) + maskSum * sizeof(int); } void YoloLayer::serialize(void* buffer) const noexcept { char *d = static_cast(buffer); write(d, m_NumBoxes); write(d, m_NumClasses); write(d, m_GridSizeX); write(d, m_GridSizeY); write(d, m_OutputSize); write(d, m_type); write(d, m_new_coords); write(d, m_scale_x_y); write(d, m_beta_nms); uint anchorsSize = m_Anchors.size(); write(d, anchorsSize); for (uint i = 0; i < anchorsSize; i++) { write(d, m_Anchors[i]); } uint maskSize = m_Mask.size(); write(d, maskSize); for (uint i = 0; i < maskSize; i++) { uint pMaskSize = m_Mask[i].size(); write(d, pMaskSize); for (uint f = 0; f < pMaskSize; f++) { write(d, m_Mask[i][f]); } } kNUM_CLASSES = m_NumClasses; kBETA_NMS = m_beta_nms; kANCHORS = m_Anchors; kMASK = m_Mask; } nvinfer1::IPluginV2* YoloLayer::clone() const noexcept { return new YoloLayer (m_NumBoxes, m_NumClasses, m_GridSizeX, m_GridSizeY, m_type, m_new_coords, m_scale_x_y, m_beta_nms, m_Anchors, m_Mask); } REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);