/* * Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Edited by Marcos Luciano * https://www.github.com/marcoslucianops */ #include #include #include #include "nvdsinfer_custom_impl.h" extern "C" bool NvDsInferParseYoloCuda(std::vector const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams, std::vector& objectList); extern "C" bool NvDsInferParseYoloECuda(std::vector const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams, std::vector& objectList); __global__ void decodeTensorYoloCuda(NvDsInferParseObjectInfo *binfo, float* boxes, float* scores, float* classes, int outputSize, int netW, int netH, float minPreclusterThreshold) { int x_id = blockIdx.x * blockDim.x + threadIdx.x; if (x_id >= outputSize) { return; } float maxProb = scores[x_id]; int maxIndex = (int) classes[x_id]; if (maxProb < minPreclusterThreshold) { binfo[x_id].detectionConfidence = 0.0; return; } float bxc = boxes[x_id * 4 + 0]; float byc = boxes[x_id * 4 + 1]; float bw = boxes[x_id * 4 + 2]; float bh = boxes[x_id * 4 + 3]; float x0 = bxc - bw / 2; float y0 = byc - bh / 2; float x1 = x0 + bw; float y1 = y0 + bh; x0 = fminf(float(netW), fmaxf(float(0.0), x0)); y0 = fminf(float(netH), fmaxf(float(0.0), y0)); x1 = fminf(float(netW), fmaxf(float(0.0), x1)); y1 = fminf(float(netH), fmaxf(float(0.0), y1)); binfo[x_id].left = x0; binfo[x_id].top = y0; binfo[x_id].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0)); binfo[x_id].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0)); binfo[x_id].detectionConfidence = maxProb; binfo[x_id].classId = maxIndex; } __global__ void decodeTensorYoloECuda(NvDsInferParseObjectInfo *binfo, float* boxes, float* scores, float* classes, int outputSize, int netW, int netH, float minPreclusterThreshold) { int x_id = blockIdx.x * blockDim.x + threadIdx.x; if (x_id >= outputSize) { return; } float maxProb = scores[x_id]; int maxIndex = (int) classes[x_id]; if (maxProb < minPreclusterThreshold) { binfo[x_id].detectionConfidence = 0.0; return; } float x0 = boxes[x_id * 4 + 0]; float y0 = boxes[x_id * 4 + 1]; float x1 = boxes[x_id * 4 + 2]; float y1 = boxes[x_id * 4 + 3]; x0 = fminf(float(netW), fmaxf(float(0.0), x0)); y0 = fminf(float(netH), fmaxf(float(0.0), y0)); x1 = fminf(float(netW), fmaxf(float(0.0), x1)); y1 = fminf(float(netH), fmaxf(float(0.0), y1)); binfo[x_id].left = x0; binfo[x_id].top = y0; binfo[x_id].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0)); binfo[x_id].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0)); binfo[x_id].detectionConfidence = maxProb; binfo[x_id].classId = maxIndex; } static bool NvDsInferParseCustomYoloCuda(std::vector const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams, std::vector& objectList) { if (outputLayersInfo.empty()) { std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl; return false; } const NvDsInferLayerInfo& boxes = outputLayersInfo[0]; const NvDsInferLayerInfo& scores = outputLayersInfo[1]; const NvDsInferLayerInfo& classes = outputLayersInfo[2]; const int outputSize = boxes.inferDims.d[0]; thrust::device_vector objects(outputSize); float minPreclusterThreshold = *(std::min_element(detectionParams.perClassPreclusterThreshold.begin(), detectionParams.perClassPreclusterThreshold.end())); int threads_per_block = 1024; int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1; decodeTensorYoloCuda<<>>( thrust::raw_pointer_cast(objects.data()), (float*) (boxes.buffer), (float*) (scores.buffer), (float*) (classes.buffer), outputSize, networkInfo.width, networkInfo.height, minPreclusterThreshold); objectList.resize(outputSize); thrust::copy(objects.begin(), objects.end(), objectList.begin()); return true; } static bool NvDsInferParseCustomYoloECuda(std::vector const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams, std::vector& objectList) { if (outputLayersInfo.empty()) { std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl; return false; } const NvDsInferLayerInfo& boxes = outputLayersInfo[0]; const NvDsInferLayerInfo& scores = outputLayersInfo[1]; const NvDsInferLayerInfo& classes = outputLayersInfo[2]; const int outputSize = boxes.inferDims.d[0]; thrust::device_vector objects(outputSize); float minPreclusterThreshold = *(std::min_element(detectionParams.perClassPreclusterThreshold.begin(), detectionParams.perClassPreclusterThreshold.end())); int threads_per_block = 1024; int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1; decodeTensorYoloECuda<<>>( thrust::raw_pointer_cast(objects.data()), (float*) (boxes.buffer), (float*) (scores.buffer), (float*) (classes.buffer), outputSize, networkInfo.width, networkInfo.height, minPreclusterThreshold); objectList.resize(outputSize); thrust::copy(objects.begin(), objects.end(), objectList.begin()); return true; } extern "C" bool NvDsInferParseYoloCuda(std::vector const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams, std::vector& objectList) { return NvDsInferParseCustomYoloCuda(outputLayersInfo, networkInfo, detectionParams, objectList); } extern "C" bool NvDsInferParseYoloECuda(std::vector const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams, std::vector& objectList) { return NvDsInferParseCustomYoloECuda(outputLayersInfo, networkInfo, detectionParams, objectList); } CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloCuda); CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloECuda);