import os import onnx import torch import torch.nn as nn class DeepStreamOutput(nn.Module): def __init__(self): super().__init__() def forward(self, x): x = x[0] boxes = x[:, :, :4] convert_matrix = torch.tensor( [[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device ) boxes @= convert_matrix objectness = x[:, :, 4:5] scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True) scores *= objectness return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1) def yolor_export(weights, cfg, size, device): if os.path.isfile('models/experimental.py'): import models from models.experimental import attempt_load from utils.activations import Hardswish model = attempt_load(weights, map_location=device) for k, m in model.named_modules(): m._non_persistent_buffers_set = set() if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish): m.act = Hardswish() elif isinstance(m, nn.Upsample) and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None model.model[-1].training = False model.model[-1].export = False else: from models.models import Darknet model_name = os.path.basename(weights).split('.pt')[0] if cfg == '': cfg = 'cfg/' + model_name + '.cfg' if not os.path.isfile(cfg): raise SystemExit('CFG file not found') model = Darknet(cfg, img_size=size[::-1]).to(device) model.load_state_dict(torch.load(weights, map_location=device)['model']) model.float() model.fuse() model.eval() model.module_list[-1].training = False return model def suppress_warnings(): import warnings warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=ResourceWarning) def main(args): suppress_warnings() print(f'\nStarting: {args.weights}') print('Opening YOLOR model') device = torch.device('cpu') model = yolor_export(args.weights, args.cfg, args.size, device) if hasattr(model, 'names') and len(model.names) > 0: print('Creating labels.txt file') with open('labels.txt', 'w', encoding='utf-8') as f: for name in model.names: f.write(f'{name}\n') model = nn.Sequential(model, DeepStreamOutput()) img_size = args.size * 2 if len(args.size) == 1 else args.size if img_size == [640, 640] and args.p6: img_size = [1280] * 2 onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = f'{args.weights}.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'output': { 0: 'batch' } } print('Exporting the model to ONNX') torch.onnx.export( model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None ) if args.simplify: print('Simplifying the ONNX model') import onnxslim model_onnx = onnx.load(onnx_output_file) model_onnx = onnxslim.slim(model_onnx) onnx.save(model_onnx, onnx_output_file) print(f'Done: {onnx_output_file}\n') def parse_args(): import argparse parser = argparse.ArgumentParser(description='DeepStream YOLOR conversion') parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pt) file path (required)') parser.add_argument('-c', '--cfg', default='', help='Input cfg (.cfg) file path') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--p6', action='store_true', help='P6 model') parser.add_argument('--opset', type=int, default=12, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Static batch-size') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time') return args if __name__ == '__main__': args = parse_args() main(args)