# PP-YOLOE / PP-YOLOE+ usage * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_ppyoloe_plus file](#edit-the-config_infer_primary_ppyoloe_plus-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the PaddleDetection repo and install the requirements https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/docs/tutorials/INSTALL.md **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `gen_wts_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the `PaddleDetection` folder. #### 3. Download the model Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ppyoloe) releases (example for PP-YOLOE+_s) ``` wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams ``` **NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`ppyoloe_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly. #### 4. Convert model Generate the `cfg` and `wts` files (example for PP-YOLOE+_s) ``` python3 gen_wts_ppyoloe.py -w ppyoloe_plus_crn_s_80e_coco.pdparams -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml ``` #### 5. Copy generated files Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder. ## ### Compile the lib Open the `DeepStream-Yolo` folder and compile the lib * DeepStream 6.2 on x86 platform ``` CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1.1 on x86 platform ``` CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1 on x86 platform ``` CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_ppyoloe_plus file Edit the `config_infer_primary_ppyoloe_plus.txt` file according to your model (example for PP-YOLOE+_s with 80 classes) ``` [property] ... custom-network-config=ppyoloe_plus_crn_s_80e_coco.cfg model-file=ppyoloe_plus_crn_s_80e_coco.wts ... num-detected-classes=80 ... ``` **NOTE**: If you use the **legacy** model, you should edit the `config_infer_primary_ppyoloe.txt` file. **NOTE**: The **PP-YOLOE+** uses zero mean normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values. ``` net-scale-factor=0.0039215697906911373 ``` **NOTE**: The **PP-YOLOE (legacy)** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values. Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225` ``` net-scale-factor=0.0173520735727919486 offsets=123.675;116.28;103.53 ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_ppyoloe_plus.txt ``` **NOTE**: If you use the **legacy** model, you should edit it to `config_infer_primary_ppyoloe.txt`. ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.