import os import onnx import torch import torch.nn as nn from super_gradients.training import models class DeepStreamOutput(nn.Module): def __init__(self): super().__init__() def forward(self, x): boxes = x[0] scores, labels = torch.max(x[1], dim=-1, keepdim=True) return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1) def suppress_warnings(): import warnings warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=ResourceWarning) def yolonas_export(model_name, weights, num_classes, size): img_size = size * 2 if len(size) == 1 else size model = models.get(model_name, num_classes=num_classes, checkpoint_path=weights) model.eval() model.prep_model_for_conversion(input_size=[1, 3, *img_size]) return model def main(args): suppress_warnings() print(f'\nStarting: {args.weights}') print('Opening YOLO-NAS model') device = torch.device('cpu') model = yolonas_export(args.model, args.weights, args.classes, args.size) model = nn.Sequential(model, DeepStreamOutput()) img_size = args.size * 2 if len(args.size) == 1 else args.size onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = f'{args.weights}.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'output': { 0: 'batch' } } print('Exporting the model to ONNX') torch.onnx.export( model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None ) if args.simplify: print('Simplifying the ONNX model') import onnxslim model_onnx = onnx.load(onnx_output_file) model_onnx = onnxslim.slim(model_onnx) onnx.save(model_onnx, onnx_output_file) print(f'Done: {onnx_output_file}\n') def parse_args(): import argparse parser = argparse.ArgumentParser(description='DeepStream YOLO-NAS conversion') parser.add_argument('-m', '--model', required=True, help='Model name (required)') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)') parser.add_argument('-n', '--classes', type=int, default=80, help='Number of trained classes (default 80)') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--opset', type=int, default=14, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Static batch-size') args = parser.parse_args() if args.model == '': raise SystemExit('Invalid model name') if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time') return args if __name__ == '__main__': args = parse_args() main(args)