import os import onnx import torch import torch.nn as nn import yolov6.utils.general as _m from yolov6.layers.common import SiLU from gold_yolo.switch_tool import switch_to_deploy from yolov6.utils.checkpoint import load_checkpoint def _dist2bbox(distance, anchor_points, box_format='xyxy'): lt, rb = torch.split(distance, 2, -1) x1y1 = anchor_points - lt x2y2 = anchor_points + rb bbox = torch.cat([x1y1, x2y2], -1) return bbox _m.dist2bbox.__code__ = _dist2bbox.__code__ class DeepStreamOutput(nn.Module): def __init__(self): super().__init__() def forward(self, x): boxes = x[:, :, :4] objectness = x[:, :, 4:5] scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True) scores *= objectness return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1) def gold_yolo_export(weights, device, inplace=True, fuse=True): model = load_checkpoint(weights, map_location=device, inplace=inplace, fuse=fuse) model = switch_to_deploy(model) for layer in model.modules(): t = type(layer) if t.__name__ == 'RepVGGBlock': layer.switch_to_deploy() model.eval() for k, m in model.named_modules(): if m.__class__.__name__ == 'Conv': if isinstance(m.act, nn.SiLU): m.act = SiLU() elif m.__class__.__name__ == 'Detect': m.inplace = False return model def suppress_warnings(): import warnings warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=ResourceWarning) def main(args): suppress_warnings() print(f'\nStarting: {args.weights}') print('Opening Gold-YOLO model') device = torch.device('cpu') model = gold_yolo_export(args.weights, device) model = nn.Sequential(model, DeepStreamOutput()) img_size = args.size * 2 if len(args.size) == 1 else args.size onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = f'{args.weights}.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'output': { 0: 'batch' } } print('Exporting the model to ONNX') torch.onnx.export( model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None ) if args.simplify: print('Simplifying the ONNX model') import onnxslim model_onnx = onnx.load(onnx_output_file) model_onnx = onnxslim.slim(model_onnx) onnx.save(model_onnx, onnx_output_file) print(f'Done: {onnx_output_file}\n') def parse_args(): import argparse parser = argparse.ArgumentParser(description='DeepStream Gold-YOLO conversion') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--opset', type=int, default=13, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Static batch-size') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time') return args if __name__ == '__main__': args = parse_args() main(args)