# YOLOX usage **NOTE**: You can use the main branch of the YOLOX repo to convert all model versions. **NOTE**: The yaml file is not required. * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_yolox file](#edit-the-config_infer_primary_yolox-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the YOLOX repo and install the requirements ``` git clone https://github.com/Megvii-BaseDetection/YOLOX.git cd YOLOX pip3 install -r requirements.txt python3 setup.py develop pip3 install onnx onnxsim onnxruntime ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `export_yolox.py` file from `DeepStream-Yolo/utils` directory to the `YOLOX` folder. #### 3. Download the model Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases/) releases (example for YOLOX-s) ``` wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth ``` **NOTE**: You can use your custom model. #### 4. Convert model Generate the ONNX model file (example for YOLOX-s) ``` python3 export_yolox.py -w yolox_s.pth -c exps/default/yolox_s.py --simplify ``` #### 5. Copy generated files Copy the generated ONNX model file to the `DeepStream-Yolo` folder. ## ### Compile the lib Open the `DeepStream-Yolo` folder and compile the lib * DeepStream 6.2 on x86 platform ``` CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1.1 on x86 platform ``` CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1 on x86 platform ``` CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_yolox file Edit the `config_infer_primary_yolox.txt` file according to your model (example for YOLOX-s with 80 classes) ``` [property] ... onnx-file=yolox_s.onnx model-engine-file=yolox_s.onnx_b1_gpu0_fp32.engine ... num-detected-classes=80 ... parse-bbox-func-name=NvDsInferParseYolo ... ``` **NOTE**: If you use the **legacy** model, you should edit the `config_infer_primary_yolox_legacy.txt` file. **NOTE**: The **YOLOX and YOLOX legacy** resize the input with left/top padding. To get better accuracy, use ``` maintain-aspect-ratio=1 symmetric-padding=0 ``` **NOTE**: The **YOLOX** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values. ``` net-scale-factor=1 ``` **NOTE**: The **YOLOX legacy** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values. Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225` ``` net-scale-factor=0.0173520735727919486 offsets=123.675;116.28;103.53 ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_yolox.txt ``` **NOTE**: If you use the **legacy** model, you should edit it to `config_infer_primary_yolox_legacy.txt`. ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes). **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.