/* * Created by Marcos Luciano * https://www.github.com/marcoslucianops */ #include __global__ void gpuYoloLayer_x(const float* input, int* num_detections, float* detection_boxes, float* detection_scores, int* detection_classes, const float scoreThreshold, const uint netWidth, const uint netHeight, const uint numOutputClasses, const uint64_t outputSize, const float* anchors, const int* mask) { uint x_id = blockIdx.x * blockDim.x + threadIdx.x; if (x_id >= outputSize) return; const float objectness = input[x_id * (5 + numOutputClasses) + 4]; if (objectness < scoreThreshold) return; int count = (int)atomicAdd(num_detections, 1); float x = (input[x_id * (5 + numOutputClasses) + 0] + anchors[x_id * 2]) * mask[x_id]; float y = (input[x_id * (5 + numOutputClasses) + 1] + anchors[x_id * 2 + 1]) * mask[x_id]; float w = __expf(input[x_id * (5 + numOutputClasses) + 2]) * mask[x_id]; float h = __expf(input[x_id * (5 + numOutputClasses) + 3]) * mask[x_id]; float maxProb = 0.0f; int maxIndex = -1; for (uint i = 0; i < numOutputClasses; ++i) { float prob = input[x_id * (5 + numOutputClasses) + 5 + i]; if (prob > maxProb) { maxProb = prob; maxIndex = i; } } detection_boxes[count * 4 + 0] = x - 0.5 * w; detection_boxes[count * 4 + 1] = y - 0.5 * h; detection_boxes[count * 4 + 2] = x + 0.5 * w; detection_boxes[count * 4 + 3] = y + 0.5 * h; detection_scores[count] = objectness * maxProb; detection_classes[count] = maxIndex; } cudaError_t cudaYoloLayer_x(const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& numOutputClasses, const void* anchors, const void* mask, cudaStream_t stream); cudaError_t cudaYoloLayer_x(const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& numOutputClasses, const void* anchors, const void* mask, cudaStream_t stream) { int threads_per_block = 16; int number_of_blocks = (outputSize / threads_per_block) + 1; for (unsigned int batch = 0; batch < batchSize; ++batch) { gpuYoloLayer_x<<>>( reinterpret_cast(input) + (batch * (5 + numOutputClasses) * outputSize), reinterpret_cast(num_detections) + (batch), reinterpret_cast(detection_boxes) + (batch * 4 * outputSize), reinterpret_cast(detection_scores) + (batch * outputSize), reinterpret_cast(detection_classes) + (batch * outputSize), scoreThreshold, netWidth, netHeight, numOutputClasses, outputSize, reinterpret_cast(anchors), reinterpret_cast(mask)); } return cudaGetLastError(); }