import os import sys import argparse import warnings import onnx import torch import torch.nn as nn from super_gradients.training import models class DeepStreamOutput(nn.Module): def __init__(self): super().__init__() def forward(self, x): boxes = x[0] scores, classes = torch.max(x[1], 2, keepdim=True) return boxes, scores, classes def suppress_warnings(): warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) def yolonas_export(model_name, weights, num_classes, size): img_size = size * 2 if len(size) == 1 else size model = models.get(model_name, num_classes=num_classes, checkpoint_path=weights) model.eval() model.prep_model_for_conversion(input_size=[1, 3, *img_size]) return model def main(args): suppress_warnings() print('\nStarting: %s' % args.weights) print('Opening YOLO-NAS model\n') device = torch.device('cpu') model = yolonas_export(args.model, args.weights, args.classes, args.size) model = nn.Sequential(model, DeepStreamOutput()) img_size = args.size * 2 if len(args.size) == 1 else args.size onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'boxes': { 0: 'batch' }, 'scores': { 0: 'batch' }, 'classes': { 0: 'batch' } } print('\nExporting the model to ONNX') torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'], dynamic_axes=dynamic_axes if args.dynamic else None) if args.simplify: print('Simplifying the ONNX model') import onnxsim model_onnx = onnx.load(onnx_output_file) model_onnx, _ = onnxsim.simplify(model_onnx) onnx.save(model_onnx, onnx_output_file) print('Done: %s\n' % onnx_output_file) def parse_args(): parser = argparse.ArgumentParser(description='DeepStream YOLO-NAS conversion') parser.add_argument('-m', '--model', required=True, help='Model name (required)') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)') parser.add_argument('-n', '--classes', type=int, default=80, help='Number of trained classes (default 80)') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--opset', type=int, default=14, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size') args = parser.parse_args() if args.model == '': raise SystemExit('Invalid model name') if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time') return args if __name__ == '__main__': args = parse_args() sys.exit(main(args))